Abstract

Magnetic plucking is an enabling technique to harvest energy from a rotary host as it converts the low-frequency excitation of rotational energy sources to high-frequency excitation that leads to resonance of small-scale piezoelectric energy harvesters. Traditional nonlinear analysis of the plucking phenomenon has relied on numerical integration methods. In this work, a semi-analytical method is developed to investigate the stability and bifurcation behaviors of rotary magnetic plucking, which integrates a second-order perturbation technique and discrete Fourier transform. Analysis through this method unfolds that the oscillatory response of the beam can lose stability through the saddle-node bifurcation and Hopf bifurcation, which eventually causes the beam to collide with the rotary host. Further, the influence of the magnetic gap and rotational speed on the stability is discussed. The study also reveals that the nonlinearity of the magnetic force can amplify the electrical power at primary resonance. As a result, the traditional impedance matching approach that neglects the nonlinearity of the magnetic force fails to predict the optimal electrical resistance. Finally, a finite element analysis shows that the instability is sensitive to damping, and the traditional single-mode approximation can lead to considerable error.

References

1.
Rashidi
,
R.
,
Summerville
,
N.
, and
Nasri
,
M.
,
2019
, “
Magnetically Actuated Piezoelectric-Based Rotational Energy Harvester With Enhanced Output in Wide Range of Rotating Speeds
,”
IEEE Trans. Magn.
,
55
(
9
), pp.
1
8
.
2.
Chen
,
C.
,
Su
,
W.
,
Wu
,
W.
,
Vasic
,
D.
, and
Costa
,
F.
,
2021
, “
Magnetic Plucked Meso-Scale Piezoelectric Energy Harvester for Low-Frequency Rotational Motion
,”
Smart Mater. Struct.
,
30
(
10
), p.
105014
.
3.
Zhao
,
L.-C.
,
Zou
,
H.-X.
,
Zhao
,
Y.-J.
,
Wu
,
Z.-Y.
,
Liu
,
F.-R.
,
Wei
,
K.-X.
, and
Zhang
,
W.-M.
,
2022
, “
Hybrid Energy Harvesting for Self-Powered Rotor Condition Monitoring Using Maximal Utilization Strategy in Structural Space and Operation Process
,”
Appl. Energy
,
314
, p.
118983
.
4.
Miao
,
G.
,
Fang
,
S.
,
Wang
,
S.
, and
Zhou
,
S.
,
2022
, “
A Low-Frequency Rotational Electromagnetic Energy Harvester Using a Magnetic Plucking Mechanism
,”
Appl. Energy
,
305
, p.
117838
.
5.
Kuang
,
Y.
,
Yang
,
Z.
, and
Zhu
,
M.
,
2016
, “
Design and Characterisation of a Piezoelectric Knee-Joint Energy Harvester With Frequency Up-Conversion Through Magnetic Plucking
,”
Smart Mater. Struct.
,
25
(
8
), p.
085029
.
6.
Pozzi
,
M.
,
2016
, “
Magnetic Plucking of Piezoelectric Bimorphs for a Wearable Energy Harvester
,”
Smart Mater. Struct.
,
25
(
4
), p.
045008
.
7.
Fu
,
H.
,
Mei
,
X.
,
Yurchenko
,
D.
,
Zhou
,
S.
,
Theodossiades
,
S.
,
Nakano
,
K.
, and
Yeatman
,
E. M.
,
2021
, “
Rotational Energy Harvesting for Self-Powered Sensing
,”
Joule
,
5
(
5
), pp.
1074
1118
.
8.
Zou
,
H.-X.
,
Zhao
,
L.-C.
,
Gao
,
Q.-H.
,
Zuo
,
L.
,
Liu
,
F.-R.
,
Tan
,
T.
,
Wei
,
K.-X.
, and
Zhang
,
W.-M.
,
2019
, “
Mechanical Modulations for Enhancing Energy Harvesting: Principles, Methods and Applications
,”
Appl. Energy
,
255
, p.
113871
.
9.
Xue
,
T.
, and
Roundy
,
S.
,
2017
, “
On Magnetic Plucking Configurations for Frequency Up-Converting Mechanical Energy Harvesters
,”
Sens. Actuat., A: Phys.
,
253
, pp.
101
111
.
10.
Fu
,
H.
, and
Yeatman
,
E. M.
,
2017
, “
A Methodology for Low-Speed Broadband Rotational Energy Harvesting Using Piezoelectric Transduction and Frequency Up-Conversion
,”
Energy
,
125
, pp.
152
161
.
11.
Shu
,
Y.
,
Wang
,
W.
, and
Chang
,
Y.
,
2018
, “
Electrically Rectified Piezoelectric Energy Harvesting Induced by Rotary Magnetic Plucking
,”
Smart Mater. Struct.
,
27
(
12
), p.
125006
.
12.
Fu
,
H.
, and
Yeatman
,
E. M.
,
2019
, “
Rotational Energy Harvesting Using Bi-Stability and Frequency Up-Conversion for Low-Power Sensing Applications: Theoretical Modelling and Experimental Validation
,”
Mech. Syst. Signal Process.
,
125
, pp.
229
244
.
13.
Fu
,
H.
,
Zhou
,
S.
, and
Yeatman
,
E. M.
,
2019
, “
Exploring Coupled Electromechanical Nonlinearities for Broadband Energy Harvesting From Low-Frequency Rotational Sources
,”
Smart Mater. Struct.
,
28
(
7
), p.
075001
.
14.
Lo
,
Y.
,
Chen
,
C.
,
Shu
,
Y.
, and
Lumentut
,
M.
,
2021
, “
Broadband Piezoelectric Energy Harvesting Induced by Mixed Resonant Modes Under Magnetic Plucking
,”
Smart Mater. Struct.
,
30
(
10
), p.
105026
.
15.
Lo
,
Y.
, and
Shu
,
Y.
,
2022
, “
Self-Powered SECE Piezoelectric Energy Harvesting Induced by Shock Excitations for Sensor Supply
,”
Mech. Syst. Signal Process.
,
177
, p.
109123
.
16.
Pillatsch
,
P.
,
Yeatman
,
E.
, and
Holmes
,
A.
,
2013
, “
Magnetic Plucking of Piezoelectric Beams for Frequency Up-Converting Energy Harvesters
,”
Smart Mater. Struct.
,
23
(
2
), p.
025009
.
17.
Dauksevicius
,
R.
,
Kleiva
,
A.
, and
Grigaliunas
,
V.
,
2018
, “
Analysis of Magnetic Plucking Dynamics in a Frequency Up-Converting Piezoelectric Energy Harvester
,”
Smart Mater. Struct.
,
27
(
8
), p.
085016
.
18.
Yung
,
K. W.
,
Landecker
,
P. B.
, and
Villani
,
D. D.
,
1998
, “
An Analytic Solution for the Force Between Two Magnetic Dipoles
,”
Phys. Separat. Sci. Eng.
,
9
, pp.
39
52
.
19.
Ramezanpour
,
R.
,
Nahvi
,
H.
, and
Ziaei-Rad
,
S.
,
2016
, “
A Vibration-Based Energy Harvester Suitable for Low-Frequency, High-Amplitude Environments: Theoretical and Experimental Investigations
,”
J. Intell. Mater. Syst. Struct.
,
27
(
5
), pp.
642
665
.
20.
Fang
,
S.
,
Fu
,
X.
, and
Liao
,
W.-H.
,
2019
, “
Asymmetric Plucking Bistable Energy Harvester: Modeling and Experimental Validation
,”
J. Sound Vib.
,
459
, p.
114852
.
21.
Akoun
,
G.
, and
Yonnet
,
J.-P.
,
1984
, “
3d Analytical Calculation of the Forces Exerted Between Two Cuboidal Magnets
,”
IEEE Trans. Magn.
,
20
(
5
), pp.
1962
1964
.
22.
Allag
,
H.
, and
Yonnet
,
J.-P.
,
2009
, “
3-d Analytical Calculation of the Torque and Force Exerted Between Two Cuboidal Magnets
,”
IEEE Trans. Magn.
,
45
(
10
), pp.
3969
3972
.
23.
Bancel
,
F.
,
1999
, “
Magnetic Nodes
,”
J. Phys. D: Appl. Phys.
,
32
(
17
), p.
2155
.
24.
Dutoit
,
N. E.
,
Wardle
,
B. L.
, and
Kim
,
S. -G.
,
2005
, “
Design Considerations for Mems-Scale Piezoelectric Mechanical Vibration Energy Harvesters
,”
Integr. Ferroelect.
,
71
(
1
), pp.
121
160
.
25.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
2008
,
Nonlinear Oscillations
,
John Wiley & Sons
,
Hoboken, NJ
.
26.
Ramakrishnan
,
V.
, and
Feeny
,
B. F.
,
2022
, “
Primary Parametric Amplification in a Weakly Forced Mathieu Equation
,”
ASME J. Vib. Acoust.
,
144
(
5
), p.
051006
.
27.
Kim
,
Y.
, and
Noah
,
S.
,
1991
, “Stability and Bifurcation Analysis of Oscillators With Piecewise-Linear Characteristics: A General Approach.”
28.
Detroux
,
T.
,
Renson
,
L.
,
Masset
,
L.
, and
Kerschen
,
G.
,
2015
, “
The Harmonic Balance Method for Bifurcation Analysis of Large-Scale Nonlinear Mechanical Systems
,”
Comput. Meth. Appl. Mech. Eng.
,
296
, pp.
18
38
.
29.
Cameron
,
T. M.
, and
Griffin
,
J. H.
,
1989
, “
An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
149
154
.
30.
Krack
,
M.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2013
, “
A High-Order Harmonic Balance Method for Systems With Distinct States
,”
J. Sound Vib.
,
332
(
21
), pp.
5476
5488
.
31.
Higgins
,
B. G.
, and
Binous
,
H.
,
2010
, “
A Simple Method for Tracking Turning Points in Parameter Space
,”
J. Chem. Eng. Jpn.
,
43
(
12
), pp.
1035
1042
.
32.
Tai
,
W.-C.
, and
Zuo
,
L.
,
2017
, “
On Optimization of Energy Harvesting From Base-Excited Vibration
,”
J. Sound Vib.
,
411
, pp.
47
59
.
33.
Schilder
,
F.
,
Vogt
,
W.
,
Schreiber
,
S.
, and
Osinga
,
H. M.
,
2006
, “
Fourier Methods for Quasi-Periodic Oscillations
,”
Int. J. Numer. Meth. Eng.
,
67
(
5
), pp.
629
671
.
34.
Shu
,
Y.
, and
Lien
,
I.
,
2006
, “
Analysis of Power Output for Piezoelectric Energy Harvesting Systems
,”
Smart Mater. Struct.
,
15
(
6
), p.
1499
.
35.
Daqaq
,
M.
, and
Bode
,
D.
,
2011
, “
Exploring the Parametric Amplification Phenomenon for Energy Harvesting
,”
Proc. Inst. Mech. Eng. Part I: J. Syst. Contr. Eng.
,
225
(
4
), pp.
456
466
.
36.
Zhu
,
D.
,
Tudor
,
M. J.
, and
Beeby
,
S. P.
,
2009
, “
Strategies for Increasing the Operating Frequency Range of Vibration Energy Harvesters: A Review
,”
Meas. Sci. Technol.
,
21
(
2
), p.
022001
.
37.
Chérif
,
A.
,
Meddad
,
M.
,
Belkhiat
,
S.
,
Richard
,
C.
,
Guyomar
,
D.
,
Eddiai
,
A.
, and
Hajjaji
,
A.
,
2014
, “
Improvement of Piezoelectric Transformer Performances Using Sshi and Sshi-Max Methods
,”
Opt. Quant. Electron.
,
46
(
1
), pp.
117
131
.
38.
ABAQUS Inc., A., 2006, ABAQUS Analysis User’s Manual: Version 6.6, Incorporated.
39.
Rakotoarison
,
H. L.
,
Yonnet
,
J.-P.
, and
Delinchant
,
B.
,
2007
, “
Using Coulombian Approach for Modeling Scalar Potential and Magnetic Field of a Permanent Magnet With Radial Polarization
,”
IEEE Trans. Magn.
,
43
(
4
), pp.
1261
1264
.
You do not currently have access to this content.