Abstract

In this paper, the theory of a Timoshenko–Ehrenfest beam is revisited and given a new perspective with particular emphasis on the relative significances of the parameters underlying the theory. The investigation is intended to broaden the scope and applicability of the theory. It has been shown that the two parameters that characterize the Timoshenko–Ehrenfest beam theory, namely the rotary inertia and the shear deformation, can be related, and hence, they can be combined into one parameter when predicting the beam’s free vibration behavior. It is explained why the effect of the shear deformation on the free vibration behavior of a Timoshenko–Ehrenfest beam for any boundary condition will be always more pronounced than that of the rotary inertia. The range of applicability of the Timoshenko–Ehrenfest beam theory for realistic problems is demonstrated by a set of new curves, which provide considerable insights into the theory.

References

1.
Euler
,
L.
,
1744
,
De Curvis Elasticis, Bousquet, Lausanne and Geneva
.
2.
Bernoulli
,
D.
,
1751
, “
On the Vibrations and Sound of Elastic Plates
,”
Commentary of the Imperial Academy of Sciences, T13 Ad Anum
,
43
, pp.
105
120
.
3.
Bresse
,
J. A. C.
,
1859
,
Cours de Mécanique Apliquée—Résistance des Matériaux et Stabilité des Constructions
,
Gauthier-Villars
,
Paris
. http://hdl.handle.net/1908/2480
4.
Rayleigh
,
L.
,
2011
,
The Theory of Sound
, Vol.
1–2
,
Cambridge University Press
,
Cambridge
.
5.
Searle
,
J. H. C.
,
1907
, “
The Effects of Rotatory Inertia on the Vibration of Bars
,”
Philos. Mag.
,
14
(
6
), pp.
35
42
.
6.
Timoshenko
,
S. P.
,
1921
, “
On the Correction for Shear of the Differential Equation for Transverse Vibrations of Prismatic Bars
,”
Philos. Mag.
,
41
(
245
), pp.
744
746
.
7.
Timoshenko
,
S. P.
,
1922
, “
On the Transverse Vibrations of Bars of Uniform Cross-Sections
,”
Philos. Mag.
,
43
(
253
), pp.
125
131
.
8.
Traill-Nash
,
R. W.
, and
Collar
,
A. R.
,
1953
, “
The Effects of Shear Flexibility and Rotatory Inertia on Bending Vibrations of Beams
,”
Q. J. Mech. Appl. Math.
,
6
(
2
), pp.
186
222
.
9.
Anderson
,
R. A.
,
1953
, “
Flexural Vibrations in Uniform Beams According to Timoshenko Theory
,”
ASME J. Appl. Mech.
,
20
(
4
), pp.
504
510
.
10.
Dolph
,
C. L.
,
1954
, “
On the Timoshenko Theory of Transverse Vibration
,”
Q. J. Appl. Math.
,
12
(
2
), pp.
175
187
.
11.
Boley
,
B. A.
, and
Chao
,
C. C.
,
1955
, “
Some Solutions of the Timoshenko Beam Equations
,”
ASME J. Appl. Mech.
,
22
(
4
), pp.
579
586
.
12.
Huang
,
T. C.
,
1961
, “
The Effect of Rotary Inertia and of Shear Deformation on the Frequency and Normal Mode Equations of Uniform Beams With Simple End Conditions
,”
ASME J. Appl. Mech.
,
28
(
4
), pp.
579
584
.
13.
Nederveen
,
C. J.
, and
Schwarzl
,
F. R.
,
1964
, “
Correction for Shear and Rotatory Inertia on Flexural Vibration of Beams
,”
Br. J. Appl. Phys.
,
15
(
3
), pp.
323
325
.
14.
Carr
,
J. B.
,
1970
, “
The Effect of Shear Flexibility and Rotatory Inertia on the Natural Frequencies of Uniform Beams
,”
Aeronaut. Q.
,
21
(
1
), pp.
79
90
.
15.
Downs
,
B.
,
1976
, “
Transverse Vibration of a Uniform, Simply Supported Timoshenko Beam Without Transverse Deflection
,”
ASME J. Appl. Mech.
,
43
(
4
), pp.
671
674
.
16.
Grant
,
D. A.
,
1978
, “
The Effect of Rotary Inertia and Shear Deformation on the Frequency and Normal Mode Equations of Uniform Beams Carrying a Concentrated Moving Mass
,”
J. Sound Vib.
,
57
(
3
), pp.
357
365
.
17.
Levinson
,
M.
, and
Cooke
,
D. W.
,
1982
, “
On the Two Frequency Spectra of Timoshenko Beams
,”
J. Sound Vib.
,
84
(
3
), pp.
319
326
.
18.
Stephen
,
N. G.
,
1982
, “
The Second Frequency Spectrum of Timoshenko Beams
,”
J. Sound Vib.
,
80
(
4
), pp.
578
582
.
19.
White
,
M. W. D.
, and
Heppler
,
G. R.
,
1995
, “
Vibration Modes and Frequencies of Timoshenko Beams With Attached Rigid Bodies
,”
ASME J. Appl. Mech.
,
62
(
1
), pp.
193
199
.
20.
Horr
,
A. M.
, and
Schmidt
,
L. C.
,
1995
, “
Closed-Form Solution for the Timoshenko Beam Theory Using a Computer-Based Mathematical Package
,”
Comput. Struct.
,
55
(
3
), pp.
405
412
.
21.
O’Reilly
,
O. M.
, and
Turcotte
,
J. S.
,
1996
, “
Another Mode of Vibration in a Timoshenko Beam
,”
J. Sound Vib.
,
198
(
4
), pp.
517
521
.
22.
Zhou
,
D.
,
2001
, “
Free Vibration of Multi-Span Timoshenko Beams Using Static Timoshenko Beam Functions
,”
J. Sound Vib.
,
241
(
4
), pp.
725
734
.
23.
Antes
,
H.
,
2003
, “
Fundamental Solution and Integral Equations for Timoshenko Beams
,”
Comput. Struct.
,
81
(
6
), pp.
383
396
.
24.
Elishakoff
,
I.
,
2020
, “
Who Developed the So-Called Timoshenko Beam Theory?
,”
Math. Mech. Solids
,
25
(
1
), pp.
97
116
.
25.
Elishakoff
,
I.
,
2020
,
Handbook on Timoshenko-Ehrenfest Beam and Uflyand-Mindlin Plate Theories
,
World Scientific
,
Singapore
.
26.
Timoshenko
,
S. P.
,
1916
,
A Course of Elasticity Theory. Part 2: Rods and Plates, St. Petersburg: A.E. Collins Publishers (in Russian)
, 2nd ed.,
Naukova Dumka Publishers
,
Kiev
, pp.
337
-
338
.
27.
Yuan
,
J.
,
Mu
,
Z.
, and
Elishakoff
,
I.
,
2020
, “
Novel Modification to the Timoshenko–Ehrenfest Theory for Inhomogeneous and Nonuniform Beams
,”
AIAA J.
,
58
(
2
), pp.
938
948
.
28.
Fazlali
,
M.
,
Faghidian
,
S. A.
,
Asghari
,
M.
, and
Shodja
,
H. M.
,
2020
, “
Nonlinear Flexure of Timoshenko–Ehrenfest Nano-beams via Nonlocal Integral Elasticity
,”
Eur. Phys. J. Plus
,
135
(
8
), p.
638
.
29.
Elishakoff
,
I.
, and
Volokh
,
K. Y.
,
2021
, “
Centenary of Two Pioneering Theories in Mechanics
,”
Math. Mech. Solids
,
26
(
12
), pp.
1896
1904
.
30.
Banerjee
,
J. R.
,
Papkov
,
S. O.
,
Vo
,
T. P.
, and
Elishakoff
,
I.
,
2021
, “
Dynamic Stiffness Formulation for a Micro Beam Using Timoshenko–Ehrenfest and Modified Couple Stress Theories with Applications
,”
J. Vib. Control
, pp.
1
12
.
31.
Kosmatka
,
J. B.
,
1993
, “
Transverse Vibration of Shear-Deformable Beams Using a General Higher Order Theory
,”
J. Sound Vib.
,
160
(
2
), pp.
259
277
.
32.
Eisenberger
,
M.
,
2003
, “
Dynamic Stiffness Vibration Analysis Using a High-Order Beam Model
,”
Int. J. Num. Meth. Eng.
,
57
(
11
), pp.
1603
1614
.
33.
Huang
,
Y.
,
Wu
,
J. X.
,
Li
,
X. F.
, and
Yang
,
L. E.
,
2013
, “
Higher-Order Theory for Bending and Vibration of Beams With Circular Cross Section
,”
J. Eng. Math.
,
80
(
1
), pp.
91
104
.
34.
Pagani
,
A.
,
Boscolo
,
M.
,
Banerjee
,
J. R.
, and
Carrera
,
E.
,
2013
, “
Exact Dynamic Stiffness Elements Based on One-Dimensional Higher-Order Theories for Free Vibration Analysis of Solid and Thin-Walled Structures
,”
J. Sound Vib.
,
332
(
23
), pp.
6104
6127
.
35.
Xie
,
L.
,
Wang
,
S.
,
Ding
,
J.
,
Banerjee
,
J. R.
, and
Wang
,
J.
,
2020
, “
An Accurate Beam Theory and Its First-Order Approximation in Free Vibration Analysis
,”
J. Sound Vib.
,
485
, p.
115567
.
36.
Messina
,
A.
, and
Reina
,
G.
,
2020
, “
On the Frequency Range of Timoshenko Beam Theory
,”
Mech. Adv. Mat. Struct.
,
27
(
16
), pp.
1387
1399
.
37.
Kapur
,
K. K.
,
1966
, “
Vibrations of a Timoshenko Beam, Using Finite-Element Approach
,”
J. Acoust. Soc. Am.
,
40
(
5
), pp.
1058
1063
.
38.
Davis
,
R.
,
Henshell
,
R. D.
, and
Warburton
,
G. B.
,
1972
, “
A Timoshenko Beam Element
,”
J. Sound Vib.
,
22
(
4
), pp.
475
487
.
39.
Reddy
,
J. N.
,
1999
, “
On the Dynamic Behaviour of the Timoshenko Beam Finite Elements
,”
Sadhana
,
24
(
3
), pp.
175
198
.
40.
Friedman
,
Z.
, and
Kosmatka
,
J. B.
,
1993
, “
An Improved Two-Node Timoshenko Beam Finite Element
,”
Comput. Struct.
,
47
(
3
), pp.
473
481
.
41.
Timoshenko
,
S. P.
,
Young
,
D. H.
, and
Weaver
,
W.
,
1974
,
Vibration Problems in Engineering
, 4th ed.,
John Wiley and Sons
,
New York
.
42.
Tse
,
F. S.
,
Morse
,
I. E.
, and
Hinkle
,
R. T.
,
1976
,
Mechanical Vibrations: Theory and Application
, 2nd ed.,
Allyn and Bacon, Inc
,
London
.
43.
Cowper
,
G. R.
,
1964
, “
The Shear Coefficient in Timoshenko’s Beam Theory
,”
ASME J. Appl. Mech.
,
33
(
2
), pp.
335
340
.
44.
Elishakoff
,
I.
, and
Lubliner
,
E.
,
1985
, “Random Vibration of a Structure via Classical and Nonclassical Theories,”
Probabilistic Methods in the Mechanics of Solids and Structures
,
S
Eggwertz
, and
NC
Lind
, eds.,
Springer
,
Berlin
, pp.
455
467
.
45.
Elishakoff
,
I.
, and
Livshits
,
D.
,
1989
, “
Some Closed-Form Solutions in Random Vibration of Bresse-Timoshenko Beams
,”
Probabilistic Eng. Mech.
,
4
(
1
), pp.
49
54
.
46.
Elishakoff
,
I.
,
2009
, “An Equation Both More Consistent and Simpler Than Bresse-Timoshenko Equation,”
Advances in Mathematical Modeling and Experimental Methods for Materials and Structures
,
R.
Gilat
, and
L.
Sills-Banks
, eds.,
Springer Verlag
,
Berlin
, pp.
249
254
.
47.
Goldenveizer
,
A. L.
,
Kaplunov
,
J. D.
, and
Nolde
,
E. V.
,
1990
, “
Asymptotic Analysis and Refinement of Timoshenko-Reissner-Type Theories of Plates and Shells
,”
Mech. Solid.
,
25
(
6
), pp.
126
129
.
48.
Kaplunov
,
J. D.
,
Kossovich
,
L. T.
, and
Nolde
,
E. V.
,
1998
,
Dynamics of Thin-Walled Elastic Bodies
,
Academic Press
,
San Diego, CA
.
49.
Elishakoff
,
I.
,
Kaplunov
,
J.
, and
Nolde
,
E.
,
2015
, “
Celebrating the Centenary of Timoshenko’s Study of Effects of Shear Deformation and Rotary Inertia
,”
ASME Appl. Mech. Rev.
,
67
(
6
), p.
060802
.
50.
Timoshenko
,
S. P.
, and
Young
,
D. H.
,
1977
,
Strength of Materials
, 5th ed.,
Van Nostrand Reinhold Company
,
London
.
51.
Krishnaswamy
,
S.
, and
Batra
,
R. C.
,
1998
, “
On Extensional Vibration Modes of Elastic Rods of Finite Length Which Include the Effect of Lateral Deformation
,”
J. Sound Vib.
,
215
(
3
), pp.
577
586
.
You do not currently have access to this content.