Abstract

This paper has focused on the dynamic analysis of mechanisms with closed-loop configuration while considering the flexibility of links. In order to present a general formulation for such a closed-loop mechanism, it is allowed to have any arbitrary number of flexible links in its chain-like structure. The truncated assumed modal expansion technique has been used here to model link flexibility. Moreover, due to the closed nature of the mentioned mechanism, which imposes finite holonomic constraints on the system, the appearance of Lagrange multipliers in the dynamic motion equations obtained by Lagrangian formulation is unavoidable. So, the Gibbs-Appell (G-A) formulation has been applied to get rid of these Lagrange multipliers and to ease the extraction of governing motion equations. In addition to the finite constraints, the impulsive constraints, which originate from the collision of system joints with the ground, have also been formulated here using the Newton's kinematic impact law. Finally, to stress the generality of the proposed formulation in deriving and solving the motion equations of complex closed-loop mechanisms in both the impact and non-impact conditions, the computer simulation results for a mechanism with four flexible links and closed-loop configuration have been presented.

References

1.
Westervelt
,
E.
,
Grizzle
,
J.
,
Chevallereau
,
C.
,
Choi
,
J.
, and
Morris
,
B.
,
2007
,
Feedback Control of Dynamic Bipedal Robot Locomotion (Control and Automation)
,
CRC Press
,
Boca Raton
.
2.
Lankarani
,
H. M.
, and
Nikravesh
,
P. E.
,
1990
, “
A Contact Force Model With Hysteresis Damping for Impact Analysis of Multibody Systems
,”
ASME J. Mech. Des.
,
112
(
3
), pp.
369
376
. 10.1115/1.2912617
3.
Shafei
,
A. M.
, and
Shafei
,
H. R.
,
2016
, “
A Systematic Method for the Hybrid Dynamic Modeling of Open Kinematic Chains Confined in a Closed Environment
,”
Multibody System Dynamics
,
38
(
1
), pp.
21
42
. 10.1007/s11044-015-9496-1
4.
Shafei
,
A. M.
, and
Shafei
,
H. R.
,
2018
, “
Oblique Impact of Multi-Flexible-Link Systems
,”
J. Vib. Control
,
24
(
5
), pp.
904
923
. 10.1177/1077546316654854
5.
Shafei
,
A. M.
, and
Shafei
,
H. R.
,
2016
, “
Dynamic Behavior of Flexible Multiple Links Captured Inside a Closed Space
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), pp.
1
13
. 10.1115/1.4032388
6.
Shafei
,
A. M.
, and
Shafei
,
H. R.
,
2018
, “
Dynamic Modeling of Planar Closed-Chain Robotic Manipulators in Flight and Impact Phases
,”
Mech. Mach. Theory
,
126
, pp.
141
154
. 10.1016/j.mechmachtheory.2018.03.007
7.
Dupac
,
M.
, and
Marghitu
,
D. B.
,
2006
, “
Nonlinear Dynamics of a Flexible Mechanism With Impact
,”
J. Sound Vib.
,
289
(
4–5
), pp.
952
966
. 10.1016/j.jsv.2005.03.002
8.
Kövecses
,
J.
, and
Cleghorn
,
W. L.
,
2004
, “
Impulsive Dynamics of a Flexible Arm: Analytical and Numerical Solutions
,”
J. Sound Vib.
,
269
(
1–2
), pp.
183
195
. 10.1016/S0022-460X(03)00068-3
9.
Yigit
,
A. S.
,
1994
, “
The Effect of Flexibility on the Impact Response of a Two-Link Rigid-Flexible Manipulator
,”
J. Sound Vib.
,
177
(
3
), pp.
349
361
. 10.1006/jsvi.1994.1439
10.
Khulief
,
Y. A.
, and
Shabana
,
A. A.
,
1986
, “
Impact Responses of Multi-Body Systems With Consistent and Lumped Masses
,”
J. Sound Vib.
,
104
(
2
), pp.
187
207
. 10.1016/0022-460X(86)90263-4
11.
Saha
,
S. K.
, and
Schiehlen
,
W.
,
2001
, “
Recursive Kinematics and Dynamics for Parallel Structural Closed-Loop Multibody Systems
,”
Mech. Struct. Mach.
,
29
(
2
), pp.
143
175
. 10.1081/SME-100104478
12.
Nikravesh
,
P. E.
, and
Ambrosio
,
J. A. C.
,
1991
, “
Systematic Construction of Equations of Motion for Rigid Flexible Multibody Systems Containing Open and Closed Kinematic Loops
,”
Int. J. Numer. Methods Eng.
,
32
(
8
), pp.
1749
1766
. 10.1002/nme.1620320814
13.
Korayem
,
M. H.
, and
Shafei
,
A. M.
,
2013
, “
Application of Recursive Gibbs–Appell Formulation in Deriving the Equations of Motion of N-Viscoelastic Robotic Manipulators in 3D Space Using Timoshenko Beam Theory
,”
Acta Astronautica
,
83
, pp.
273
294
. 10.1016/j.actaastro.2012.10.026
14.
Shafei
,
A. M.
, and
Korayem
,
M. H.
,
2017
, “
Theoretical and Experimental Study of DLCC for Flexible Robotic Arms in Point-to-Point Motion
,”
Optim. Control Appl. Methods
,
38
(
6
), pp.
963
972
. 10.1002/oca.2302
15.
Hwang
,
Y. L.
, and
Shabana
,
A. A.
,
1994
, “
Decoupled Joint-Elastic Coordinate Formulation for the Analysis of Closed-Chain Flexible Multibody Systems
,”
ASME J. Mech. Des.
,
116
(
3
), pp.
961
963
. 10.1115/1.2919476
16.
Kim
,
S. S.
, and
Haug
,
E. J.
,
1989
, “
A Recursive Formulation for Flexible Multibody Dynamics, Part II: Closed-Loop Systems
,”
Comput. Meth. Appl. Mech. Eng.
,
74
(
3
), pp.
251
269
. 10.1016/0045-7825(89)90051-0
17.
Murray
,
J. J.
, and
Lovell
,
G. H.
,
1989
, “
Dynamic Modeling of Closed-Chain Robotic Manipulators and Implications for Trajectory Control
,”
Int. J. Rob. Autom.
,
5
(
4
), pp.
522
528
. 10.1109/70.88066
18.
Wang
,
H.
,
Eberhard
,
P.
, and
Lin
,
Z.
,
2010
, “
Modeling and Simulation of Closed Loop Multibody Systems With Bodies-Joints Composite Modules
,”
Multibody Sys. Dyn.
,
24
(
4
), pp.
389
411
. 10.1007/s11044-010-9208-9
19.
Korayem
,
M. H.
, and
Shafei
,
A. M.
,
2015
, “
A New Approach for Dynamic Modeling of n-Viscoelastic-Link Robotic Manipulators Mounted on a Mobile Base
,”
Nonlinear Dyn.
,
79
(
4
), pp.
2767
2786
. 10.1007/s11071-014-1845-8
20.
Korayem
,
M. H.
,
Shafei
,
A. M.
, and
Shafei
,
H. R.
,
2012
, “
Dynamic Modeling of Nonholonomic Wheeled Mobile Manipulators With Elastic Joints Using Recursive Gibbs–Appell Formulation
,”
Sci. Iranica Trans. B Mech. Eng.
,
19
(
4
), pp.
1092
1104
. 10.1016/j.scient.2012.05.001
21.
Korayem
,
M. H.
,
Shafei
,
A. M.
,
Doosthoseini
,
M.
,
Absalan
,
A.
, and
Kadkhodaei
,
B.
,
2016
, “
Theoretical and Experimental Investigation of Viscoelastic Serial Robotic Manipulators With Motors at the Joints Using Timoshenko Beam Theory and Gibbs–Appell Formulation
,”
J. Multi-body Dyn.
,
230
(
1
), pp.
37
51
. 10.1177/1464419315574406
22.
Rezaei
,
V.
, and
Shafei
,
A. M.
,
2019
, “
Dynamic Analysis of Flexible Robotic Manipulators Constructed of Functionally Graded Materials
,”
IJST Trans. Mech. Eng.
,
43
(
1
), pp.
327
342
. 10.1007/s40997-018-0160-2
23.
Korayem
,
M. H.
,
Shafei
,
A. M.
,
Absalan
,
F.
,
Kadkhodaei
,
B.
, and
Azimi
,
A.
,
2014
, “
Kinematic and Dynamic Modeling of Viscoelastic Robotic Manipulators Using Timoshenko Beam Theory: Theory and Experiment
,”
Int. J. Adv. Manuf. Technol.
,
71
(
5–8
), pp.
1005
1018
. 10.1007/s00170-013-5391-1
24.
Korayem
,
M. H.
,
Shafei
,
A. M.
, and
Dehkordi
,
S. F.
,
2014
, “
Systematic Modeling of a Chain of n-Flexible Link Manipulators Connected by Revolute–Prismatic Joints Using Recursive Gibbs-Appell Formulation
,”
Arch. Appl. Mech.
,
84
(
2
), pp.
187
206
. 10.1007/s00419-013-0793-y
25.
Korayem
,
M. H.
, and
Shafei
,
A. M.
,
2015
, “
Motion Equation of Nonholonomic Wheeled Mobile Robotic Manipulator With Revolute–Prismatic Joints Using Recursive Gibbs–Appell Formulation
,”
Appl. Math. Modell.
,
39
(
5–6
), pp.
1701
1716
. 10.1016/j.apm.2014.09.030
26.
Shafei
,
A. M.
, and
Shafei
,
H. R.
,
2017
, “
Planar Multibranch Open-Loop Robotic Manipulators Subjected to Ground Collision
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
6
), pp.
1
14
. 10.1115/1.4036197
27.
Shafei
,
A. M.
, and
Shafei
,
H. R.
,
2018
, “
Dynamic Modeling of Tree-Type Robotic Systems by Combining 3×3 Rotation Matrices and 4×4 Transformation Ones
,”
Multibody Sys. Dyn.
,
44
(
4
), pp.
367
395
. 10.1007/s11044-018-09642-4
You do not currently have access to this content.