This study investigates the modal property structure of high-speed planetary gears with gyroscopic effects. The vibration modes of these systems are complex-valued and speed-dependent. Equally-spaced and diametrically-opposed planet spacing are considered. Three mode types exist, and these are classified as planet, rotational, and translational modes. The properties of each mode type and that these three types are the only possible types are mathematically proven. Reduced eigenvalue problems are determined for each mode type. The eigenvalues for an example high-speed planetary gear are determined over a wide range of carrier speeds. Divergence and flutter instabilities are observed at extremely high speeds.

References

1.
Cunliffe
,
F.
,
Smith
,
J. D.
, and
Welbourn
,
D. B.
,
1974
, “
Dynamic Tooth Loads in Epicyclic Gears
,”
J. Eng. Ind.
,
96
(
2
), pp.
578
584
.10.1115/1.3438367
2.
Botman
,
M.
,
1976
, “
Epicyclic Gear Vibrations
,”
J. Eng. Ind.
,
98
(
3
), pp.
811
815
.10.1115/1.3439034
3.
Kahraman
,
A.
,
1994
, “
Planetary Gear Train Dynamics
,”
J. Mech. Des.
,
116
(
3
), pp.
713
720
.10.1115/1.2919441
4.
Kahraman
,
A.
,
1994
, “
Natural Modes of Planetary Gear Trains
,”
J. Sound Vib.
,
173
(
1
), pp.
125
130
.10.1006/jsvi.1994.1222
5.
Saada
,
A.
, and
Velex
,
P.
,
1995
, “
An Extended Model for the Analysis of the Dynamic Behavior of Planetary Trains
,”
J. Mech. Des.
,
117
(
2
), pp.
241
247
.10.1115/1.2826129
6.
Lin
,
J.
, and
Parker
,
R. G.
,
1999
, “
Analytical Characterization of the Unique Properties of Planetary Gear Free Vibration
,”
J. Vib. Acoust.
,
121
(
3
), pp.
316
321
.10.1115/1.2893982
7.
Lin
,
J.
, and
Parker
,
R. G.
,
2000
, “
Structured Vibration Characteristics of Planetary Gears With Unequally Spaced Planets
,”
J. Sound Vib.
,
233
(
5
), pp.
921
928
.10.1006/jsvi.1999.2581
8.
Lin
,
J.
, and
Parker
,
R. G.
,
1999
, “
Sensitivity of Planetary Gear Natural Frequencies and Vibration Modes to Model Parameters
,”
J. Sound Vib.
,
228
(
1
), pp.
109
128
.10.1006/jsvi.1999.2398
9.
Lin
,
J.
, and
Parker
,
R. G.
,
2001
, “
Natural Frequency Veering in Planetary Gears
,”
Mech. Struct. Mach.
,
29
(
4
), pp.
411
429
.10.1081/SME-100107620
10.
Lin
,
J.
, and
Parker
,
R. G.
,
2002
, “
Planetary Gear Parametric Instability Caused by Mesh Stiffness Variation
,”
J. Sound Vib.
,
249
(
1
), pp.
129
145
.10.1006/jsvi.2001.3848
11.
Kiracofe
,
D. R.
, and
Parker
,
R. G.
,
2007
, “
Structured Vibration Modes of General Compound Planetary Gear Systems
,”
J. Vib. Acoust.
,
129
(
1
), pp.
1
16
.10.1115/1.2345680
12.
Wu
,
X.
, and
Parker
,
R. G.
,
2008
, “
Modal Properties of Planetary Gears With an Elastic Continuum Ring Gear
,”
J. Appl. Mech.
,
75
(
3
), p.
031014
.10.1115/1.2839892
13.
Parker
,
R.
, and
Wu
,
X.
,
2010
, “
Vibration Modes of Planetary Gears With Unequally Spaced Planets and an Elastic Ring Gear
,”
J. Sound Vib.
,
329
(
11
), pp.
2265
2275
.10.1016/j.jsv.2009.12.023
14.
Eritenel
,
T.
, and
Parker
,
R. G.
,
2009
, “
Modal Properties of Three-Dimensional Helical Planetary Gears
,”
J. Sound Vib.
,
325
(
1–2
), pp.
397
420
.10.1016/j.jsv.2009.03.002
15.
Guo
,
Y.
, and
Parker
,
R.
,
2010
, “
Purely Rotational Model and Vibration Modes of Compound Planetary Gears
,”
Mech. Mach. Theor.
,
45
(
3
), pp.
365
377
.10.1016/j.mechmachtheory.2009.09.001
16.
Kahraman
,
A.
,
2001
, “
Free Torsional Vibration Characteristics of Compound Planetary Gear Sets
,”
Mech. Mach. Theor.
,
36
(
8
), pp.
953
971
.10.1016/S0094-114X(01)00033-7
17.
Bahk
,
C.-J.
, and
Parker
,
R. G.
,
2011
, “
Analytical Solution for the Nonlinear Dynamics of Planetary Gears
,”
J. Comput. Nonlinear Dyn.
,
6
(
2
), p.
021007
.10.1115/1.4002392
18.
Abousleiman
,
V.
,
Velex
,
P.
, and
Becquerelle
,
S.
,
2007
, “
Modeling of Spur and Helical Gear Planetary Drives With Flexible Ring Gears and Planet Carriers
,”
J. Mech. Des.
,
129
(
1
), pp.
95
106
.10.1115/1.2359468
19.
Meirovitch
,
L.
,
1974
, “
A New Method of Solution of the Eigenvalue Problem for Gyroscopic Systems
,”
AIAA J.
,
12
(
10
), pp.
1337
1342
.10.2514/3.49486
20.
Meirovitch
,
L.
,
1975
, “
A Modal Analysis for the Response of Linear Gyroscopic Systems
,”
J. Appl. Mech.
,
42
(
2
), pp.
446
450
.10.1115/1.3423597
21.
D’Eleuterio
,
G.
, and
Hughes
,
P.
,
1984
, “
Dynamics of Gyroelastic Continua
,”
J. Appl. Mech.
,
51
(
2
), pp.
415
422
.10.1115/1.3167634
22.
Ambarisha
,
V. K.
, and
Parker
,
R. G.
,
2006
, “
Suppression of Planet Mode Response in Planetary Gear Dynamics Through Mesh Phasing
,”
J. Vib. Acoust.
,
128
(
2
), pp.
133
142
.10.1115/1.2171712
23.
Han
,
R. P. S.
, and
Zu
,
J. W.-Z.
,
1992
, “
Modal Analysis of Rotating Shafts: A Body-Fixed Axis Formulation Approach
,”
J. Sound Vib.
,
156
(
1
), pp.
1
16
.10.1016/0022-460X(92)90808-B
24.
Tobias
,
S. A.
, and
Arnold
,
R. N.
,
1957
, “
The Influence of Dynamical Imperfection on the Vibration of Rotating Disks
,”
Proc. Inst. Mech. Eng.
,
171
(
1
), pp.
669
690
.10.1243/PIME_PROC_1957_171_056_02
25.
Mote
,
C. D.
, Jr.
,
1970
, “
Stability of Circular Plates Subjected to Moving Loads
,”
J. Franklin Inst.
,
290
(
4
), pp.
329
344
.10.1016/0016-0032(70)90188-2
26.
Chen
,
J. S.
, and
Bogy
,
D. B.
,
1992
, “
Effects of Load Parameters on the Natural Frequencies and Stability of a Flexible Spinning Disk With a Stationary Load System
,”
J. Appl. Mech.
,
59
(
2
), pp.
S230
S235
.10.1115/1.2899494
27.
Parker
,
R. G.
, and
Sathe
,
P. J.
,
1999
, “
Free Vibration and Stability of a Spinning Disk-Spindle System
,”
J. Vib. Acoust.
,
121
(
3
), pp.
391
396
.10.1115/1.2893992
28.
Parker
,
R. G.
, and
Sathe
,
P. J.
,
1999
, “
Exact Solutions for the Free and Forced Vibration of a Rotating Disk-Spindle System
,”
J. Sound Vib.
,
223
(
3
), pp.
445
465
.10.1006/jsvi.1998.2097
29.
Leissa
,
A. W.
,
1974
, “
On a Curve Veering Aberration
,”
J. Appl. Math. Phys. (ZAMP)
,
25
(
1
), pp.
99
111
.10.1007/BF01602113
30.
Kuttler
,
J. R.
, and
Sigillito
,
V. G.
,
1981
, “
On Curve Veering
,”
J. Sound Vib.
,
75
(
4
), pp.
585
588
.10.1016/0022-460X(81)90448-X
31.
Perkins
,
N. C.
, and
Mote
,
C. D.
, Jr.
,
1986
, “
Comments on Curve Veering in Eigenvalue Problems
,”
J. Sound Vib.
,
106
(
3
), pp.
451
463
.10.1016/0022-460X(86)90191-4
You do not currently have access to this content.