Quasi-periodic motions and their stability are addressed from the point of view of different harmonic balance-based approaches. Two numerical methods are used: a generalized multidimensional version of harmonic balance and a modification of a classical solution by harmonic balance. The application to the case of a nonlinear response of a Duffing oscillator under a bi-periodic excitation has allowed a comparison of computational costs and stability evaluation results. The solutions issued from both methods are close to one another and time marching tests showing a good agreement with the harmonic balance results confirm these nonlinear responses. Besides the overall adequacy verification, the observation comparisons would underline the fact that while the 2D approach features better performance in resolution cost, the stability computation turns out to be of more interest to be conducted by the modified 1D approach.

References

1.
L.
Chua
, and
Ushida
,
A.
, 1981, “
Algorithms for Computing Almost Periodic Steady State Response of Non-Linear Systems to Multiple Input Frequencies
,”
IEEE Trans. Circuits Syst.
,
28
(
10
), pp.
953
971
.
2.
Schilder
,
F.
,
Vogt
,
W.
,
Schreiber
,
S.
, and
Osinga
,
H.
, 2006, “
Fourier Methods for Quasi-Periodic Oscillations
,.
Int. J. Numer. Methods Eng.
,
67
(
5
), pp.
629
671
.
3.
Hibner
,
D.
, 1975, “
Dynamic Response of Viscous-Damped Multi-Shaft Jet Engines
,”
J. Aircr.
,
12
(
4
), pp.
305
312
.
4.
M.
Lalanne
, and
Ferraris
,
G.
, 1997,
Rotordynamics Prediction in Engineering,
2nd ed.,
Wiley
,
New York
.
5.
Ehrich
,
F.
, ed., 1998,
Handbook of Rotordynamics.
Krieger
,
Malabar, FL
.
6.
Guskov
,
M.
,
Sinou
,
J.-J.
, and
Thouverez
,
F.
, 2007, “
Multi-Dimensional Harmonic Balance Applied to Rotor Dynamics
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007
.
7.
Nayfeh
,
A.
, and
Mook
,
D.
, 1979,
Non-Linear Oscillations,
John Wiley & Sons, Inc
.
New York
.
8.
Hayashi
,
C.
, 1953,
Nonlinear Oscillations in Physical Systems,
Princeton University
,
Princeton, NJ
.
9.
Genesio
,
R.
, and
Tesi
,
A.
, 1992, “
Harmonic Balance Methods for the Analysis of Chaotic Dynamics in Nonlinear Systems
,”
Automatica
,
28
(
3
), pp.
531
548
.
10.
Hahn
,
E.
, and
Chen
,
P.
, 1994, “
Harmonic Balance Analysis of General Squeeze-Film Damped Multidegree-of-Freedom Rotor Bearing Systems
,”
ASME J. Tribol.
,
116
, pp.
499
507
.
11.
Nacivet
,
S.
,
Pierre
,
C.
,
Thouverez
,
F.
, and
Jezequel
,
L.
, 2003, “
A Dynamic Lagrangian Frequency-Time Method for the Vibration of Dry-Friction-Damped Systems
,”
J. Sound Vib.
,
265
(
1
), pp.
201
219
.
12.
Nandakumar
,
K.
, and
Chatterjee
,
A.
, 2005, “
Higher-Order Pseudo Averaging Via Harmonic Balance for Strongly Nonlinear Oscillations
,”
ASME J. Vibr. Acoust.
,
127
(
4
), pp.
416
419
.
13.
Basso
,
M.
,
Materassi
,
D.
, and
Salapaka
,
M.
, 2008, “
Hysteresis Models of Dynamic Mode Atomic Force Microscopes: Analysis and Identification Via Harmonic Balance
,”
Nonlinear Dyn.
,
54
(
4
), pp.
297
306
.
14.
Sundararajan
,
P.
, and
Noah
,
S.
, 1997, “
Dynamics of Forced Nonlinear Systems Using Shooting/Arc Length Continuation Method - Application To Rotor Systems
,”
ASME J. Vibr. Acoust.
,
119
, pp.
9
20
.
15.
Rodrigues
,
F.
,
Thouverez
,
F.
,
Gibert
,
C.
, and
Jezequel
,
L.
, 2003, “
Chebyshev Polynomials Fits for Efficient Analysis of Finite Length Squeeze Film Damped Rotors
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
175
183
.
16.
Dunne
,
J.
, and
Hayward
,
P.
, 2006, “
A Split-Frequency Harmonic Balance Method for Nonlinear Oscillators With Multiharmonic Forcing
,”
J. Sound Vib.
,
295
(
3–5
), pp.
939
963
.
17.
Lau
,
S.
, and
Cheung
,
Y.
, 1983, “
Incremental Harmonic Balance Method With Multiple Time Scales for Aperiodic Vibration Of Nonlinear Systems
,”
J. Appl. Mech.
,
50
, pp.
871
876
.
18.
Kim
,
Y.-B.
, and
Noah
,
S.
, 1996, “
Quasi-Periodic Response and Stability Analysis of a Non-Linear Jeffcott Rotor
,”
J. Sound Vib.
,
190
(
2
), pp.
239
253
.
19.
Kim
,
Y.
, and
Choi
,
S.-K.
, 1997, “
A Multiple Harmonic Balance Method for the Internal Resonant Vibration of a Non-Linear Jeffcott Rotor
,”
J. Sound Vib.
,
208
(
5
), pp.
745
761
.
20.
Pusenjak
,
R.
, and
Oblak
,
M.
, 2004, “
Incremental Harmonic Balance Method With Multiple Time Variables for Dynamical Systems With Cubic Non-Linearities
,”
Int. J. Numer. Methods Eng.
,
59
, pp.
255
292
.
21.
Akgün
,
D.
,
Çankaya
,
I.
, and
Peyton Jones
,
J.
, 2009, “
A Symbolic Algorithm for the Automatic Computation of Multitone-Input Harmonic Balance Equations for Nonlinear Systems
,”
Nonlinear Dyn.
,
56
(
1
), pp.
179
191
.
22.
Guskov
,
M.
,
Sinou
,
J.-J.
, and
Thouverez
,
F.
, 2008, “
Multi-Dimensional Harmonic Balance Applied to Rotor Dynamics
,”
Mech.Res. Commun.
,
35
, pp.
537
545
.
23.
Legrand
,
M.
, 2005, “
Modèles de Prédiction de l’Intéraction Rotor/Stator dans un Moteur d’Avion
,” PhD thesis, Université de Nantes, Nantes, France.
24.
Laxalde and
,
D.
,
Thouverez
,
F.
, 2007, “
Non-Linear Vibrations of Multi-Stage Bladed Disks Systems with Friction Ring Dampers
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007
.
25.
Kaas-Petersen
,
C.
, 1985, “
Computation of Quasi-Periodic Solutions of Forced Dissipative Systems
,”
J. Comput. Phys.
,
58
, pp.
395
408
.
26.
Kaas-Petersen
,
C.
, 1986, “
Computation of Quasi-Periodic Solutions of Forced Dissipative Systems II
,”
J. Comput. Phys.
,
64
, pp.
433
442
.
27.
Kaas-Petersen
,
C.
, 1987, “
Computation, Continuation and Bifurcation of Torus Solutions for Dissipative Maps and Ordinary Differential Equations
,”
Physica D
,
25
, pp.
288
306
.
28.
Kim
,
Y.
, 1996, “
Quasi-Periodic Response And Stability Analysis for Non-Linear Systems: A General Approach
,”
J. Sound Vib.
,
192
(
4
), pp.
821
833
.
29.
Tiwari
,
M.
,
Gupta
,
K.
, and
Prakash
,
O.
, 2000, “
Effect of Radial Internal Clearance of a Ball Bearing on the Dynamics of a Balanced Horizontal Rotor
,”
J. Sound Vib.
,
238
(
5
), pp.
723
756
.
You do not currently have access to this content.