To maximize the electromechanical transduction of vibratory energy harvesters, the resonance frequency of the harvesting device is usually tuned to the excitation frequency. To achieve this goal, some concepts call for utilizing an axial static preload to soften or stiffen the structure (Leland and Wright, 2006, “Resonance Tuning of Piezoelectric Vibration Energy Scavenging Generators Using Compressive Axial Preload,” Smart Mater. Struct., 15, pp. 1413–1420; Morris et al., 2008, “A Resonant Frequency Tunable, Extensional Mode Piezoelectric Vibration Harvesting Mechanism,” Smart Mater. Struct., 17, p. 065021). For the most part, however, models used to describe the effect of the axial preload on the harvester’s response are linear lumped-parameter models that can hide some of the essential features of the dynamics and, sometimes, oppose the experimental trends. To resolve this issue, this study aims to develop a comprehensive understanding of energy harvesting using axially loaded beams. Specifically, using nonlinear Euler–Bernoulli beam theory, an electromechanical model of a clamped-clamped energy harvester subjected to transversal excitations and static axial loading is developed and discretized using a Galerkin expansion. Using the method of multiple scales, the general nonlinear physics of the system is investigated by obtaining analytical expressions for the steady-state response amplitude, the voltage drop across a resistive load, and the output power. These theoretical expressions are then validated against experimental data. It is demonstrated that in addition to the ability of tuning the harvester to the excitation frequency via axial load variations, the axial load aids in (i) increasing the electric damping in the system, thereby enhancing the energy transfer from the beam to the electric load, (ii) amplifying the effect of the external excitation on the structure, and (iii) enhancing the effective nonlinearity of the device. These factors combined can increase the steady-state response amplitude, output power, and bandwidth of the harvester.

1.
du Plessis
,
A. J.
,
Huigsloot
,
M. J.
, and
Discenzo
,
F. D.
, 2005, “
Resonant Packaged Piezoelectric Power Harvester for Machinery Health Monitoring
,”
Proc. SPIE
0277-786X,
5762
, pp.
224
235
.
2.
Inman
,
D. J.
, and
Grisso
,
B. L.
, 2006, “
Towards Autonomous Sensing
,”
Proc. SPIE
0277-786X,
6174
, p.
61740T
.
3.
Sanders
,
R. S.
, and
Lee
,
M. T.
, 1995, “
Implantable Pacemakers
,”
Proc. IEEE
0018-9219,
84
(
3
), pp.
480
486
.
4.
Capel
,
I. D.
,
Dorrell
,
H. M.
,
Spencer
,
E. P.
, and
Davis
,
M. W.
, 2003, “
The Amelioration of the Suffering Associated With Spinal Cord Injury With Subperception Transcranial Electrical Stimulation
,”
Spinal Cord
1362-4393,
41
, pp.
109
117
.
5.
Renzenbrink
,
G.
, and
Jzerman
,
M. J.
, 2004, “
Percutaneous Neuromuscular Electrical Stimulation for Treating Shoulder Pain in Chronic Hemiplegia. Effects on Shoulder Pain and Quality of Life
,”
Clin. Rehabil.
0269-2155,
18
, pp.
359
365
.
6.
Roundy
,
S.
,
Wright
,
P. K.
, and
Rabaey
,
J.
, 2003, “
A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes
,”
Comput. Commun.
0140-3664,
26
, pp.
1131
1144
.
7.
Roundy
,
S.
, and
Wright
,
P. K.
, 2005, “
A Piezoelectric Vibration-Based Generator for Wireless Electronics
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
16
, pp.
809
823
.
8.
Arms
,
S. W.
,
Townsend
,
C. P.
,
Churchill
,
D. L.
,
Galbreath
,
G. H.
, and
Mundell
,
S. W.
, 2005, “
Power Management for Energy Harvesting Wireless Sensors
,”
Proc. SPIE
0277-786X,
5763
pp.
267
275
.
9.
Gurav
,
S. P.
,
Kasyap
,
A.
,
Sheplak
,
M.
,
Cattafesta
,
L.
,
Haftka
,
R. T.
,
Goosen
,
J. F. L.
, and
Van Keulen
,
F.
, 2004, “
Uncertainty-Based Design Optimization of a Micro Piezoelectric Composite Energy Reclamtation Device
,”
Proceedings of the Tenth AIAA/ISSSMO Multidisciplinary Analysis and Optimization Conference
, pp.
3559
3570
.
10.
Zhou
,
W.
,
Liao
,
W. H.
, and
Li
,
W. J.
, 2005, “
Analysis and Design of a Self-Powered Piezoelectric Microaccelerometer
,”
Proc. SPIE
0277-786X,
5763
pp.
233
240
.
11.
Paradiso
,
J. A.
, and
Starner
,
T.
, 2005, “
Energy Scavenging for Mobile and Wireless Electronics
,”
IEEE Pervasive Comput.
1536-1268,
4
, pp.
18
27
.
12.
Roundy
,
S.
, and
Zhang
,
Y.
, 2005, “
Toward Self-Tuning Adaptive Vibration-Based Micro-Generators
,”
Smart Materials, Nano- and Micro-Smart Systems
, Sydney, Australia.
13.
Wu
,
W.
,
Chen
,
Y.
,
Lee
,
B.
,
He
,
J.
, and
Peng
,
Y.
, 2006, “
Tunable Resonant Frequency Power Harvesting Devices
,”
Proc. SPIE
0277-786X,
6169
, p.
61690A
.
14.
Challa
,
V.
,
Prasad
,
M.
,
Shi
,
Y.
, and
Fisher
,
F.
, 2008, “
A Vibration Energy Harvesting Device With Bidirectional Resonance Frequency Tunability
,”
Smart Mater. Struct.
0964-1726,
75
, pp.
1
10
.
15.
Shahruz
,
S. M.
, 2006, “
Design of Mechanical Band-Pass Filters for Energy Scavenging
,”
J. Sound Vib.
0022-460X,
292
, pp.
987
998
.
16.
Baker
,
J.
,
Roundy
,
S.
, and
Wright
,
P.
, 2005, “
Alternative Geometries for Increasing Power Density in Vibration Energy Scavenging for Wireless Sensors
,”
Proceedings of the Third International Energy Conversion Conference
, San Francisco, CA, pp.
959
970
.
17.
Rastegar
,
J.
,
Pereira
,
C.
, and
Nguyen
,
H. L.
, 2006, “
Piezoelectric-Based Power Sources for Harvesting Energy From Platforms With Low Frequency Vibrations
,”
Proc. SPIE
0277-786X,
6171
, p.
617101
.
18.
Mann
,
B. P.
, and
Sims
,
N. D.
, 2009, “
Energy Harvesting From the Nonlinear Oscillations of Magnetic Levitation
,”
J. Sound Vib.
0022-460X,
319
, pp.
515
530
.
19.
Shahruz
,
S. M.
, 2006, “
Limits of Performance of Mechanical Band-Pass Filters Used in Energy Scavenging
,”
J. Sound Vib.
0022-460X,
293
, pp.
449
461
.
20.
Sari
,
I.
,
Balkan
,
T.
, and
Kulah
,
H.
, 2008, “
An Electromagnetic Micro Power Generator for Wideband Environmental Vibrations
,”
Sens. Actuators, A
0924-4247,
145–146
, pp.
405
413
.
21.
Leland
,
E.
, and
Wright
,
P.
, 2006, “
Resonance Tuning of Piezoelectric Vibration Energy Scavenging Generators Using Compressive Axial Preload
,”
Smart Mater. Struct.
0964-1726,
15
, pp.
1413
1420
.
22.
Morris
,
D.
,
Youngsman
,
J.
,
Anderson
,
M.
, and
Bahr
,
D.
, 2008, “
A Resonant Frequency Tunable, Extensional Mode Piezoelectric Vibration Harvesting Mechanism
,”
Smart Mater. Struct.
0964-1726,
17
, p.
065021
.
23.
Nayfeh
,
A. H.
, 1981,
Introduction to Perturbation Techniques
,
Wiley Interscience
,
New York
.
24.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations
,
Wiley-Interscience
,
New York
.
25.
Nayfeh
,
A. H.
, 2004,
Linear and Nonlinear Structural Mechanics
,
Wiley
,
New Jersey
.
26.
Lacarbonara
,
W.
, 1997, “
A Theoretical and Experimental Investigation of Nonlinear Vibrations of Buckled Beams
,” MS thesis, Virginia Tech, Blacksburg, VA.
27.
Kreider
,
W.
, 1997, “
Linear and Nonlinear Vibrations of Buckled Beams
,” MS thesis, Virginia Tech, Blacksburg, VA.
28.
Stanton
,
S.
,
McGehee
,
C. C.
, and
Mann
,
B.
, 2009, “
Reversible Hysteresis for Broadband Magnetopiezoelastic Energy Harvesting
,”
Appl. Phys. Lett.
0003-6951,
95
, p.
174103
.
29.
Daqaq
,
M. F.
, 2010, “
Response of Uni-Modal Duffing-Type Harvesters to Random Forced Excitations
,”
J. Sound Vib.
0022-460X,
329
, pp.
3621
3631
.
You do not currently have access to this content.