Most magnetorheological (MR) fluid dampers are designed as fixed-pole valve mode devices, where the MR fluid is forced to flow through a magnetically active annular gap. This forced flow generates the damping force, which can be continuously regulated by controlling the strength of the applied magnetic field. Because the size of the annular gap is usually very small relative to the radii of the annulus, the flow of the MR fluid through this annulus is usually approximated by the flow of fluid through two infinitely wide parallel plates. This approximation, which is widely used in designing and modeling of MR dampers, is satisfactory for many engineering purposes. However, the model does not represent accurately the physical processes and, therefore, expressions that correctly describe the physical behavior are highly desirable. In this paper, a mathematical model based on the flow of MR fluids through an annular gap is developed. Central to the model is the solution for the flow of any fluid model with a yield stress (of which MR fluid is an example) through the annular gap inside the damper. The physical parameters of a MR damper designed and fabricated at the University of Manchester are used to evaluate the performance of the damper and to compare with the corresponding predictions of the parallel plate model. Simulation results incorporating the effects of fluid compressibility are presented, and it is shown that this model can describe the major characteristics of such a device—nonlinear, asymmetric, and hysteretic behaviors—successfully.

1.
Oyadiji
,
S. O.
, and
Sarafianos
,
P.
, 2003, “
Characterization and Comparison of the Dynamical Properties of Conventional and Electro-Rheological Fluid Shock Absorbers
,”
Int. J. Veh. Des.
0143-3369,
33
(
1–3
), pp.
251
278
.
2.
Olatunbosun
,
O. A.
, and
Dunn
,
J. W.
, 1992, “
An Evaluation of the Effect of Suspension Nonlinearities on Vehicle Ride
,”
Second International Conference on Vehicle Comfort
, Bologna, Italy.
3.
Phillips
,
R. W.
, 1969, “
Engineering Applications of Fluids With a Variable Yield Stress
,” Ph.D. thesis, University of California, Berkeley, CA.
4.
Jolly
,
M. R.
,
Bender
,
J. W.
, and
Carlson
,
J. D.
, “
Properties and Applications of Commercial Magnetorheological Fluids
,” Technical Publication by Lord Corporation, Thomas Lord Research Center, Cary, NC.
5.
Lindler
,
J. E.
,
Dimock
,
G. A.
, and
Wereley
,
N. M.
, 2000, “
Design of a Magnetorheological Automotive Shock Absorber
,”
Proc. SPIE
0277-786X,
3985
, pp.
426
437
.
6.
Lord Corporation Materials Division
, “
Engineering Note—Designing With MR Fluids
,” Technical Publication by Lord Corporation, Thomas Lord Research Center, Cary, NC.
7.
Duclos
,
T. G.
, 1988, “
Design of Devices Using Electrorheological Fluids
,” Soc. Automot. Eng. [Spec. Publ.], Technical Paper No.
881134
.
8.
Jolly
,
M. R.
,
Bender
,
J. W.
, and
Carlson
,
J. D.
, 1998, “
Properties and Applications of MR Fluids
,”
SPIE Fifth Annual International Symposium on Smart Structures and Materials
, San Diego, CA.
9.
Dyke
,
S. J.
,
Spencer
,
B. F.
, Jr.
,
Sain
,
M. K.
, and
Carlson
,
J. D.
, 1997, “
On the Efficacy of Magnetorheological Dampers for Seismic Response Reduction
,”
Proceedings of the ASME Design Engineering Technical Conferences
.
10.
Snyder
,
R. A.
,
Kamath
,
G. M.
, and
Wereley
,
N. M.
, 2000, “
Characterization and Analysis of Magnetorheological Damper Behaviour Due to Sinusoidal Loading
,”
Proc. SPIE
0277-786X,
3989
, pp.
213
229
.
11.
Spencer
,
B. F.
, Jr.
,
Dyke
,
S. J.
,
Sain
,
M. K.
, and
Carlson
,
J. D.
, 1996, “
Phenomenological Model of a Magnetorheological Damper
,”
J. Eng. Mech.
0733-9399,
123
(
3
), pp.
230
238
.
12.
Dyke
,
S. J.
, and
Spencer
,
B. F.
, Jr.
, 1997,”
A Comparison of Semi-Active Control Strategies for the MR Damper
,”
Proceedings of the IASTED International Conference
, Intelligent Information Systems, Bahamas, Dec. 8–10.
13.
Dyke
,
S. J.
,
Yi
,
F.
, and
Caicedo
,
J. M.
, 1999, “
Seismic Response Control Using Smart Damper
,”
Proceedings of the 1999 American Control Conference
, San Diego, CA.
14.
Li
,
W. H.
,
Yao
,
G. Z.
,
Chen
,
G.
,
Yeo
,
S. H.
, and
Yap
,
F. F.
, 2000, “
Testing and Steady State Modelling of a Linear MR Damper Under Sinusoidal Loading
,”
Smart Mater. Struct.
0964-1726,
9
, pp.
95
102
.
15.
Stanway
,
R.
,
Sproston
,
J. L.
, and
El-Wahed
,
A. K.
, 1996, “
Application of Electrorheological Fluids in Vibration Control: A Survey
,”
Smart Mater. Struct.
0964-1726,
5
, pp.
464
482
.
16.
Wereley
,
N. M.
,
Pang
,
L.
, and
Kamath
,
G. M.
, 1998, “
Idealized Hysteresis Modelling of Electrorheological and Magnetorheological Dampers
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
9
, pp.
642
649
.
17.
Kelso
,
S. P.
, and
Gordaninejad
,
F.
, 1999, “
Magneto-Rheological Fluid Shock Absorber for Off-Highway, High-Payload Vehicles
,”
Proc. SPIE
0277-786X,
3672
, pp.
44
54
.
18.
Wang
,
X.
, and
Gordaninejad
,
F.
, 1999, “
Flow Analysis of Field-Controllable, Electro-and Magneto-Rheological Fluids Using Herschel-Bulkley Model
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
10
(
8
), pp.
601
608
.
19.
Wang
,
X.
, and
Gordaninejad
,
F.
, 2007, “
Flow Analysis and Modeling of Field-Controllable, Electro-and Magneto-Rheological Fluid Dampers
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
74
(
1
), pp.
13
22
.
20.
Surace
,
C.
,
Worden
,
K.
, and
Tomlinson
,
G. R.
, 1992, “
On the Non-linear Characterization of Automotive Shock Absorbers
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
206
, pp.
3
16
.
21.
Gordaninejad
,
F.
, and
Kelso
,
S. P.
, 2000, “
Magneto-Rheological Fluid Shock Absorbers for HMMWV
,”
Proc. SPIE
0277-786X,
3989
, pp.
266
273
.
22.
Chooi
,
W. W.
, and
Oyadiji
,
S. O.
, 2004, “
Mathematical Modelling and Design of MR Dampers
,”
Proceedings of ESDA 2004, Seventh Biennial Conference on Engineering Systems Design and Analysis
, Manchester, UK.
23.
Chooi
,
W. W.
, and
Oyadiji
,
S. O.
, 2009, “
Experimental Testing and Validation of a Magnetorheological (MR) Damper Model
,”
ASME J. Vibr. Acoust.
0739-3717,
131
, p.
061003
.
24.
Chhabra
,
R. P.
, and
Richardson
,
J. F.
, 1999,
Non-Newtonian Flow in the Process Industries—Fundamentals and Engineering Applications
,
Butterworth-Heinemann
,
Oxford, UK
.
25.
Skelland
,
A. H. P.
, 1967,
Non-Newtonian Flow and Heat Transfer
,
Wiley
,
New York
.
26.
Laird
,
W. M.
, 1957, “
Slurry and Suspension Transport: Basic Flow Studies on Bingham Plastic Fluids
,”
Ind. Eng. Chem.
0019-7866,
49
(
1
), pp.
138
141
.
27.
Chooi
,
W. W.
, and
Oyadiji
,
S. O.
, 2004, “
Characterizing the Effect of Temperature and Magnetic Field Strengths on the Complex Shear Modulus Properties of Magnetorheological Fluids
,”
Proceedings of the 9th International Conference on Electrorheological (ER) Fluids and Magnetorheological (MR) Suspensions
, Beijing, China, Aug. 29–Sept. 3.
28.
Barnes
,
H. A.
,
Hutton
,
J. F.
, and
Walters
,
K.
, 1989,
An Introduction to Rheology
,
Elsevier
,
New York
.
29.
Yahia
,
A.
, and
Khayat
,
K. H.
, 2001, “
Analytical Models for Estimating Yield Stress of High Performance Pseudoplastic Grout
,”
Cem. Concr. Res.
0008-8846,
31
, pp.
731
738
.
30.
Ferraris
,
C. F.
, 1999, “
Measurement of the Rheological Properties of High Performance Concrete: State of the Art Report
,”
J. Res. Natl. Inst. Stand. Technol.
1044-677X,
104
(
5
), pp.
461
478
.
31.
Cafferty
,
S.
, 1996, “
Characterisation of Automotive Shock Absorbers Using Time and Frequency Domain Techniques
,” Ph.D. thesis, Victoria University of Manchester, Manchester, UK.
You do not currently have access to this content.