The use of statistical methods for anomaly detection has become of interest to researchers in many subject areas. Structural health monitoring in particular has benefited from the versatility of statistical damage-detection techniques. We propose modeling structural vibration sensor output data using nonlinear time-series models. We demonstrate the improved performance of these models over currently used linear models. Whereas existing methods typically use a single sensor’s output for damage detection, we create a combined sensor analysis to maximize the efficiency of damage detection. From this combined analysis we may also identify the individual sensors that are most influenced by structural damage.

1.
Doebling
,
S.
,
Farrar
,
C.
,
Prime
,
M.
, and
Shevitz
,
D.
, 1998, “
A Review of Damage Identification Methods That Examine Changes in Dynamic Properties
,”
Shock Vib. Dig.
0583-1024,
30
, pp.
91
105
.
2.
Sohn
,
H.
,
Farrar
,
C. R.
,
Hemez
,
F. M.
,
Shunk
,
D. S.
,
Stinemates
,
D. W.
,
Nadler
,
B. R.
, and
Czarnecki
,
J. J.
, 2004, “
A Review of Structural Health Monitoring Literature From 1996–2001
,” Los Alamos National Laboratory, Report No. LA-13976-MS.
3.
Farrar
,
C. R.
, and
Worden
,
K.
, 2007, “
An Introduction to Structural Health Monitoring
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
365
, pp.
303
315
.
4.
Fugate
,
M.
,
Sohn
,
H.
, and
Farrar
,
C. R.
, 2001, “
Vibration-Based Damage Detection Using Statistical Process Control
,”
Mech. Syst. Signal Process.
0888-3270,
15
, pp.
707
721
.
5.
Sohn
,
H.
,
Czarnecki
,
J.
, and
Farrar
,
C. R.
, 2000, “
Structural Health Monitoring Using Statistical Process Control
,”
J. Struct. Eng.
0733-9445,
126
, pp.
1356
1363
.
6.
Allen
,
D.
,
Sohn
,
H.
,
Worden
,
K.
, and
Farrar
,
C.
, 2002, “
Utilizing the Sequential Probability Ratio Test for Building Joint Monitoring
,”
Proc. SPIE
0277-786X,
4704
, pp.
1
11
.
7.
Clark
,
G.
, 2008, “
Cable Damage Detection Using Time Domain Reflectometry and Model-Based Algorithms
,” Lawrence Livermore National Laboratory, Document No. LLNL-CONF-402567.
8.
Ma
,
J.
, and
Perkins
,
S.
, 2003, “
Online Novelty Detection on Temporal Sequences
,”
Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, Washington, DC, pp.
613
618
.
9.
Herzog
,
J.
,
Hanlin
,
J.
,
Wegerich
,
S.
, and
Wilks
,
A.
, 2005, “
High Performance Condition Monitoring of Aircraft Engines
,”
Proceedings of GT 2005 ASME Turbo Expo
, Reno, NV, Paper No. GT2005-68485.
10.
Brockwell
,
P.
, and
Davis
,
R.
, 1991,
Time Series: Theory and Methods
,
Springer
,
New York
.
11.
Worden
,
K.
, and
Manson
,
G.
, 2007, “
The Application of Machine Learning to Structural Health Monitoring
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
365
, pp.
515
537
.
12.
Shimada
,
M.
,
Mita
,
A.
, and
Feng
,
M. Q.
, 2006, “
Damage Detection of Structures Using Support Vector Machines Under Various Boundary Conditions
,”
Proc. SPIE
0277-786X,
6174
, pp.
61742K
.
13.
Bulut
,
A.
,
Singh
,
A. K.
,
Shin
,
P.
,
Fountain
,
T.
,
Jasso
,
H.
,
Yan
,
L.
, and
Elgamal
,
A.
, 2005, “
Real-Time Nondestructive Structural Health Monitoring Using Support Vector Machines and Wavelets
,”
Proc. SPIE
0277-786X,
5770
, pp.
180
189
.
14.
Worden
,
K.
, and
Lane
,
A. J.
, 2001, “
Damage Identification Using Support Vector Machines
,”
Smart Mater. Struct.
0964-1726,
10
, pp.
540
547
.
15.
Chattopadhyay
,
A.
,
Das
,
S.
, and
Coelho
,
C. K.
, 2007, “
Damage Diagnosis Using a Kernel-Based Method
,”
Insight-Non-Destructive Testing and Condition Monitoring
,
49
, pp.
451
458
.
16.
Smola
,
A. J.
, and
Schölkopf
,
B.
, 2004, “
A Tutorial on Support Vector Regression
,”
Stat. Comput.
0960-3174,
14
, pp.
199
222
.
17.
Copas
,
J. B.
, 1997, “
Using Regression Models for Prediction: Shrinkage and Regression to the Mean
,”
Stat. Methods Med. Res.
,
6
, pp.
167
183
. 0962-2802
18.
Fu
,
W. J.
, 1998, “
Penalized Regressions: The Bridge Versus the Lasso
,”
J. Comput. Graph. Stat.
,
7
, pp.
397
416
. 1061-8600
19.
Rytter
,
A.
, and
Kirkegaard
,
P.
, 1997, “
Vibration Based Inspection Using Neural Networks
,”
Structural Damage Assessment Using Advanced Signal Processing Procedures
,
Proceedings of DAMAS ‘97
, University of Sheffield, UK, pp.
97
108
.
20.
Scholkopf
,
B.
,
Sung
,
K. K.
,
Burges
,
C. J. C.
,
Girosi
,
F.
,
Niyogi
,
P.
,
Poggio
,
T.
, and
Vapnik
,
V.
, 1997, “
Comparing Support Vector Machines With Gaussian Kernels to Radial Basis Function Classifiers
,”
IEEE Trans. Signal Process.
1053-587X,
45
, pp.
2758
2765
.
21.
Chang
,
C. -J.
, and
Lin
,
C. -J.
, 2001,
LIBSVM: A Library for Support Vector Machines
, software available at http://www.csie.ntu.edu.tw/~cjlin/libsvmhttp://www.csie.ntu.edu.tw/~cjlin/libsvm.
You do not currently have access to this content.