The use of statistical methods for anomaly detection has become of interest to researchers in many subject areas. Structural health monitoring in particular has benefited from the versatility of statistical damage-detection techniques. We propose modeling structural vibration sensor output data using nonlinear time-series models. We demonstrate the improved performance of these models over currently used linear models. Whereas existing methods typically use a single sensor’s output for damage detection, we create a combined sensor analysis to maximize the efficiency of damage detection. From this combined analysis we may also identify the individual sensors that are most influenced by structural damage.
1.
Doebling
, S.
, Farrar
, C.
, Prime
, M.
, and Shevitz
, D.
, 1998, “A Review of Damage Identification Methods That Examine Changes in Dynamic Properties
,” Shock Vib. Dig.
0583-1024, 30
, pp. 91
–105
.2.
Sohn
, H.
, Farrar
, C. R.
, Hemez
, F. M.
, Shunk
, D. S.
, Stinemates
, D. W.
, Nadler
, B. R.
, and Czarnecki
, J. J.
, 2004, “A Review of Structural Health Monitoring Literature From 1996–2001
,” Los Alamos National Laboratory, Report No. LA-13976-MS.3.
Farrar
, C. R.
, and Worden
, K.
, 2007, “An Introduction to Structural Health Monitoring
,” Philos. Trans. R. Soc. London, Ser. A
0962-8428, 365
, pp. 303
–315
.4.
Fugate
, M.
, Sohn
, H.
, and Farrar
, C. R.
, 2001, “Vibration-Based Damage Detection Using Statistical Process Control
,” Mech. Syst. Signal Process.
0888-3270, 15
, pp. 707
–721
.5.
Sohn
, H.
, Czarnecki
, J.
, and Farrar
, C. R.
, 2000, “Structural Health Monitoring Using Statistical Process Control
,” J. Struct. Eng.
0733-9445, 126
, pp. 1356
–1363
.6.
Allen
, D.
, Sohn
, H.
, Worden
, K.
, and Farrar
, C.
, 2002, “Utilizing the Sequential Probability Ratio Test for Building Joint Monitoring
,” Proc. SPIE
0277-786X, 4704
, pp. 1
–11
.7.
Clark
, G.
, 2008, “Cable Damage Detection Using Time Domain Reflectometry and Model-Based Algorithms
,” Lawrence Livermore National Laboratory, Document No. LLNL-CONF-402567.8.
Ma
, J.
, and Perkins
, S.
, 2003, “Online Novelty Detection on Temporal Sequences
,” Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, Washington, DC, pp. 613
–618
.9.
Herzog
, J.
, Hanlin
, J.
, Wegerich
, S.
, and Wilks
, A.
, 2005, “High Performance Condition Monitoring of Aircraft Engines
,” Proceedings of GT 2005 ASME Turbo Expo
, Reno, NV, Paper No. GT2005-68485.10.
Brockwell
, P.
, and Davis
, R.
, 1991, Time Series: Theory and Methods
, Springer
, New York
.11.
Worden
, K.
, and Manson
, G.
, 2007, “The Application of Machine Learning to Structural Health Monitoring
,” Philos. Trans. R. Soc. London, Ser. A
0962-8428, 365
, pp. 515
–537
.12.
Shimada
, M.
, Mita
, A.
, and Feng
, M. Q.
, 2006, “Damage Detection of Structures Using Support Vector Machines Under Various Boundary Conditions
,” Proc. SPIE
0277-786X, 6174
, pp. 61742K
.13.
Bulut
, A.
, Singh
, A. K.
, Shin
, P.
, Fountain
, T.
, Jasso
, H.
, Yan
, L.
, and Elgamal
, A.
, 2005, “Real-Time Nondestructive Structural Health Monitoring Using Support Vector Machines and Wavelets
,” Proc. SPIE
0277-786X, 5770
, pp. 180
–189
.14.
Worden
, K.
, and Lane
, A. J.
, 2001, “Damage Identification Using Support Vector Machines
,” Smart Mater. Struct.
0964-1726, 10
, pp. 540
–547
.15.
Chattopadhyay
, A.
, Das
, S.
, and Coelho
, C. K.
, 2007, “Damage Diagnosis Using a Kernel-Based Method
,” Insight-Non-Destructive Testing and Condition Monitoring
, 49
, pp. 451
–458
.16.
Smola
, A. J.
, and Schölkopf
, B.
, 2004, “A Tutorial on Support Vector Regression
,” Stat. Comput.
0960-3174, 14
, pp. 199
–222
.17.
Copas
, J. B.
, 1997, “Using Regression Models for Prediction: Shrinkage and Regression to the Mean
,” Stat. Methods Med. Res.
, 6
, pp. 167
–183
. 0962-280218.
Fu
, W. J.
, 1998, “Penalized Regressions: The Bridge Versus the Lasso
,” J. Comput. Graph. Stat.
, 7
, pp. 397
–416
. 1061-860019.
Rytter
, A.
, and Kirkegaard
, P.
, 1997, “Vibration Based Inspection Using Neural Networks
,” Structural Damage Assessment Using Advanced Signal Processing Procedures
, Proceedings of DAMAS ‘97
, University of Sheffield, UK, pp. 97
–108
.20.
Scholkopf
, B.
, Sung
, K. K.
, Burges
, C. J. C.
, Girosi
, F.
, Niyogi
, P.
, Poggio
, T.
, and Vapnik
, V.
, 1997, “Comparing Support Vector Machines With Gaussian Kernels to Radial Basis Function Classifiers
,” IEEE Trans. Signal Process.
1053-587X, 45
, pp. 2758
–2765
.21.
Chang
, C. -J.
, and Lin
, C. -J.
, 2001, LIBSVM: A Library for Support Vector Machines
, software available at http://www.csie.ntu.edu.tw/~cjlin/libsvmhttp://www.csie.ntu.edu.tw/~cjlin/libsvm.Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.