For the past five years, cantilevered beams with piezoceramic layer(s) have been frequently used as piezoelectric energy harvesters for vibration-to-electric energy conversion. Typically, the energy harvester beam is located on a vibrating host structure and the dynamic strain induced in the piezoceramic layer(s) results in an alternating voltage output across the electrodes. Vibration modes of a cantilevered piezoelectric energy harvester other than the fundamental mode have certain strain nodes where the dynamic strain distribution changes sign in the direction of beam length. It is theoretically explained and experimentally demonstrated in this paper that covering the strain nodes of vibration modes with continuous electrodes results in strong cancellations of the electrical outputs. A detailed dimensionless analysis is given for predicting the locations of the strain nodes of a cantilevered beam in the absence and presence of a tip mass. Since the cancellation issue is not peculiar to clamped-free boundary conditions, dimensionless data of modal strain nodes are tabulated for some other practical boundary condition pairs and these data can be useful in modal actuation problems as well. How to avoid the cancellation problem in energy harvesting by using segmented electrode pairs is described for single-mode and multimode vibrations of a cantilevered piezoelectric energy harvester. An electrode configuration-based side effect of using a large tip mass on the electrical response at higher vibration modes is discussed theoretically and demonstrated experimentally.

1.
Williams
,
C. B.
, and
Yates
,
R. B.
, 1996, “
Analysis of a Micro-Electric Generator for Microsystems
,”
Sens. Actuators, A
0924-4247,
52
, pp.
8
11
.
2.
Beeby
,
S. P.
,
Tudor
,
M. J.
, and
White
,
N. M.
, 2006, “
Energy Harvesting Vibration Sources for Microsystems Applications
,”
Meas. Sci. Technol.
0957-0233,
17
, pp.
R175
R195
.
3.
Anton
,
S. R.
, and
Sodano
,
H. A.
, 2007, “
A Review of Power Harvesting Using Piezoelectric Materials (2003–2006)
,”
Smart Mater. Struct.
0964-1726,
16
, pp.
R1
-
R21
.
4.
Cook-Chennault
,
K. A.
,
Thambi
,
N.
, and
Sastry
,
A. M.
, 2008, “
Powering MEMS Portable Devices—A Review of Non-Regenerative and Regenerative Power Supply Systems with Emphasis on Piezoelectric Energy Harvesting Systems
,”
Smart Mater. Struct.
0964-1726,
17
, p.
043001
.
5.
Roundy
,
S.
,
Wright
,
P. K.
, and
Rabaey
,
J. M.
, 2003, “
A Study of Low Level Vibrations as a Power Source for Wireless Sonsor Nodes
,”
Comput. Commun.
0140-3664,
26
, pp.
1131
1144
.
6.
Sodano
,
H. A.
,
Park
,
G.
, and
Inman
,
D. J.
, 2004, “Estimation of Electric Charge Output for Piezoelectric Energy Harvesting,” Integrated Ferroelectrics An International Journal, 40, pp. 49–58.
7.
duToit
,
N. E.
,
Wardle
,
B. L.
, and
Kim
,
S.
, 2005, “Design Considerations for MEMS-Scale Piezoelectric Mechanical Vibration Energy Harvesters,” Strain An International Journal, 71, pp. 121–160.
8.
Erturk
,
A.
, and
Inman
,
D. J.
, “
On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters
,” J. Intell. Mater. Syst. Struct., to be published.
9.
Erturk
,
A.
, and
Inman
,
D. J.
, 2008, “
A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters
,”
ASME J. Vibr. Acoust.
0739-3717,
130
, p.
041002
.
10.
Ottman
,
G. K.
,
Hofmann
,
H. F.
, and
Lesieutre
,
G. A.
, 2003, “
Optimized Piezoelectric Energy Harvesting Circuit Using Step-Down Converter in Discontinuous Conduction Mode
,”
IEEE Trans. Power Electron.
0885-8993,
18
, pp.
696
703
.
11.
Guan
,
M. J.
, and
Liao
,
W. H.
, 2007, “
On the Efficiencies of Piezoelectric Energy Harvesting Circuits Towards Storage Device Voltages
,”
Smart Mater. Struct.
0964-1726,
16
, pp.
498
505
.
12.
1987,
IEEE Standard on Piezoelectricity
,
IEEE
,
New York
.
13.
Beer
,
F. P.
, and
Johnston
,
E. R.
, Jr. 1992,
Mechanics of Materials
,
McGraw-Hill
,
New York
.
14.
Fang
,
H.-B.
,
Liu
,
J.-Q.
,
Xu
,
Z.-Y.
,
Dong
,
L.
,
Chen
,
D.
,
Cai
,
B.-C.
, and
Liu
,
Y.
, 2006, “
A MEMS-Based Piezoelectric Power Generator for Low Frequency Vibration Energy Harvesting
,”
Chin. Phys. Lett.
0256-307X,
23
, pp.
732
734
.
15.
Elvin
,
N. G.
,
Elvin
,
A. A.
, and
Spector
,
M.
, 2001, “
A Self-Powered Mechanical Strain Energy Sensor
,”
Smart Mater. Struct.
0964-1726,
10
, pp.
293
299
.
16.
Kim
,
S.
,
Clark
,
W. W.
, and
Wang
,
Q. M.
, 2005, “
Piezoelectric Energy Harvesting with a Clamped Circular Plate: Analysis
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
16
, pp.
847
854
.
17.
Kim
,
S.
,
Clark
,
W. W.
, and
Wang
,
Q. M.
, 2005, “
Piezoelectric Energy Harvesting With a Clamped Circular Plate: Experimental Study
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
16
, pp.
855
863
.
18.
Sodano
,
H. A.
,
Inman
,
D. J.
, and
Park
,
G.
, 2005, “
Generation and Storage of Electricity from Power Harvesting Devices
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
16
, pp.
67
75
.
19.
Erturk
,
A.
, and
Inman
,
D. J.
, 2008, “
An Experimentally Validated Bimorph Cantilever Model for Piezoelectric Energy Harvesting From Base Excitations
,”
Smart Mater. Struct.
0964-1726, in review.
20.
Cady
,
W. G.
, 1946,
Piezoelectricity: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals
,
McGraw-Hill
,
New York
.
21.
Crawley
,
E. F.
, and
de Luis
,
J.
, 1987, “
Use of Piezoelectric Actuators as Elements of Intelligent Structures
,”
AIAA J.
0001-1452,
25
, pp.
1373
1385
.
22.
Lesieutre
,
G. A.
, and
Davis
,
C. L.
, 1997, “
Can a Coupling Coefficient of a Piezoelectric Device Be Higher Than Its Active Material
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
8
, pp.
859
867
.
23.
Erturk
,
A.
,
Anton
,
S. R.
, and
Inman
,
D. J.
, 2007, “
Energy Harvesting from Rigid Body Motions
,”
Proceedings of the 18th International Conference of Adaptive Structures and Technologies
, Ottawa, ON, Canada, on CD.
You do not currently have access to this content.