Free transverse vibrations of nonhomogeneous orthotropic rectangular plates of varying thickness with two opposite simply supported edges (y=0 and y=b) and resting on two-parameter foundation (Pasternak-type) have been studied on the basis of classical plate theory. The other two edges (x=0 and x=a) may be any combination of clamped and simply supported edge conditions. The nonhomogeneity of the plate material is assumed to arise due to the exponential variations in Young’s moduli and density along one direction. By expressing the displacement mode as a sine function of the variable between simply supported edges, the fourth order partial differential equation governing the motion of such plates of exponentially varying thickness in another direction gets reduced to an ordinary differential equation with variable coefficients. The resulting equation is then solved numerically by using the Chebyshev collocation technique for two different combinations of clamped and simply supported conditions at the other two edges. The lowest three frequencies have been computed to study the behavior of foundation parameters together with other plate parameters such as nonhomogeneity, density, and thickness variation on the frequencies of the plate with different aspect ratios. Normalized displacements are presented for a specified plate. A comparison of results with those obtained by other methods shows the computational efficiency of the present approach.

1.
Bose
,
R. K.
, 1967, “
Note on Forced Vibration of a Thin Non-Homogeneous Circular Plate With Central Hole
,”
Indian J. Phys.
0019-5480,
41
, pp.
886
890
.
2.
Biswas
,
S. K.
, 1969, “
Note on the Torsional Vibration of a Finite Circular Cylinder of Non-Homogeneous Material by a Particular Type of Twist on One of the Plane Surface
,”
Indian J. Phys.
0019-5480,
43
, pp.
320
323
.
3.
Rao
,
G. V.
,
Rao
,
B. P.
, and
Raju
,
I. S.
, 1974, “
Vibration of Inhomogeneous Thin Plates Using a High-Precision Triangular Element
,”
J. Sound Vib.
0022-460X,
34
(
3
), pp.
444
445
.
4.
Tomar
,
J. S.
,
Gupta
,
D. C.
, and
Jain
,
N. C.
, 1982, “
Vibration of Non-Homogeneous Plates of Variable Thickness
,”
J. Acoust. Soc. Am.
0001-4966,
72
(
3
), pp.
851
855
.
5.
Tomar
,
J. S.
,
Gupta
,
D. C.
, and
Jain
,
N. C.
, 1984, “
Free Vibration of an Isotropic Non-Homogeneous Infinite Plate of Parabolically Varying Thickness
,”
Indian J. Pure Appl. Math.
0019-5588,
15
(
2
), pp.
211
220
.
6.
Gupta
,
U. S.
,
Lal
,
R.
, and
Sharma
,
S.
, 2006, “
Vibration Analysis of Non-Homogeneous Circular Plate of Non-Linear Thickness Variation by Differential Quadrature Method
,”
J. Sound Vib.
0022-460X,
298
(
4–5
), pp.
892
906
.
7.
Chakraverty
,
S.
,
Jindal
,
R.
, and
Agarwal
,
V. K.
, 2007, “
Vibration of Non-Homogeneous Orthotropic Elliptic and Circular Plates With Variable Thickness
,”
ASME J. Vibr. Acoust.
0739-3717,
129
(
2
), pp.
256
259
.
8.
Lal
,
R.
, and
Sharma
,
S.
, 2004, “
Axisymmetric Vibrations of Non-Homogeneous Polar Orthotropic Annular Plate of Variable Thickness
,”
J. Sound Vib.
0022-460X,
272
(
1–2
), pp.
245
265
.
9.
Lal
,
R.
, and
Dhanpati
, 2007, “
Transverse Vibrations of Non-Homogeneous Orthotropic Rectangular Plates of Variable Thickness: A Spline Technique
,”
J. Sound Vib.
0022-460X,
306
(
1–2
), pp.
203
214
.
10.
Hetenyi
,
M.
, 1946,
Beams on Elastic Foundation
,
The University of Michigan Press
,
Ann Arbor, MI
.
11.
Selvadurai
,
A. P. S.
, 1979,
Elastic Analysis of Soil-Foundation Interaction
,
Elsevier
,
New York
.
12.
Kerr
,
A. D.
, 1964, “
Elastic and Viscoelastic Foundation Models
,”
ASME J. Appl. Mech.
0021-8936,
31
(
3
), pp.
491
498
.
13.
Hetenyi
,
M.
, 1966, “
Beams and Plates on Elastic Foundation and Related Problems
,”
Appl. Mech. Rev.
0003-6900,
19
, pp.
95
102
.
14.
Gaith
,
M.
, and
Müftü
,
S.
, 2007, “
Lateral Vibration of Two Axially Translating Beams Interconnected by a Winkler Foundation
,”
ASME J. Vibr. Acoust.
0739-3717,
129
(
3
), pp.
256
259
.
15.
Kobayashi
,
H.
, and
Sonoda
,
K.
, 1989, “
Rectangular Mindlin Plates on Elastic Foundation
,”
Int. J. Mech. Sci.
0020-7403,
31
(
9
), pp.
679
692
.
16.
Kennedy
,
D.
, and
Williams
,
F. W.
, 1990, “
Vibration and Buckling of Anisotropic Assemblies With Winkler Foundation
,”
J. Sound Vib.
0022-460X,
138
(
3
), pp.
501
510
.
17.
Raju
,
K. K.
, and
Rao
,
G. V.
, 1990, “
Effect of Elastic Foundation on the Mode Shapes in Stability and Vibration Problems of Simply Supported Rectangular Plates
,”
J. Sound Vib.
0022-460X,
139
(
1
), pp.
170
173
.
18.
Liew
,
K. M.
,
Han
,
J. B.
,
Xiao
,
Z. M.
, and
Du
,
H.
, 1996, “
Differential Quadrature Method for Mindlin Plates on Winkler Foundation
,”
Int. J. Mech. Sci.
0020-7403,
38
(
4
), pp.
405
421
.
19.
Yingshi
,
Z.
, 1999, “
Vibration of Stepped Rectangular Thin Plates on Winkler Foundation
,”
Appl. Math. Mech.
0253-4827,
20
(
5
), pp.
568
578
.
20.
Yang
,
T. Y.
, 1972, “
A Finite Element Analysis of Plates on a Two Parameter Foundation Model
,”
Comput. Struct.
0045-7949,
2
(
4
), pp.
593
614
.
21.
Turvey
,
G. J.
, 1977, “
Uniformly Loaded, Simply Supported, Antisymmetrically Laminated, Rectangular Plate on a Winkler-Pasternak Foundation
,”
Int. J. Solids Struct.
0020-7683,
13
(
5
), pp.
437
444
.
22.
Katiskadelis
,
J. T.
, and
Kallivokas
,
L. F.
, 1986, “
Clamped Plates on Pasternak-Type Elastic Foundation by the Boundary Element Method
,”
ASME J. Appl. Mech.
0021-8936,
53
(
4
), pp.
909
917
.
23.
Wang
,
J. G.
,
Wang
,
X. X.
, and
Haung
,
M. K.
, 1992, “
Fundamental Solutions and Boundary Integral Equations for Reissner’s Plates on Two Parameter Foundations
,”
Int. J. Solids Struct.
0020-7683,
29
(
10
), pp.
1233
1239
.
24.
Wang
,
C. W.
,
Wang
,
C.
, and
Ang
,
K. K.
, 1997, “
Vibration of Initially Stressed Reddy Plates on a Winkler-Pasternak Foundation
,”
J. Sound Vib.
0022-460X,
204
(
2
), pp.
203
212
.
25.
Omurtag
,
M. H.
, and
Kadioglu
,
F.
, 1998, “
Free Vibration Analysis of Orthotropic Plates Resting on Pasternak Foundation by Mixed Finite Element Formulation
,”
Comput. Struct.
0045-7949,
67
(
4
), pp.
253
265
.
26.
Malekzadeh
,
P.
, and
Karami
,
G.
, 2004, “
Vibration of Non-Uniform Thick Plates on Elastic Foundation by Differential Quadrature Method
,”
Eng. Struct.
0141-0296,
26
(
10
), pp.
1473
1482
.
27.
Leung
,
A. V. T.
, and
Zhu
,
B.
, 2005, “
Transverse Vibration of Mindlin Plates on Two-Parameter Foundation by Analytical Trapezoidal p-Elements
,”
J. Eng. Mech.
0733-9399,
131
(
11
), pp.
1140
1145
.
28.
Lekhnitskii
,
S. G.
, 1968,
Anisotropic Plates
, Translated by S. W. Tsai and T. Cheron,
Gordon and Breach
,
New York
.
29.
Panc
,
V.
, 1975,
Theories of Elastic Plates
,
Noordhoff International
,
Leydon, The Netherlands
.
30.
Lal
,
R.
,
Gupta
,
U. S.
, and
Goel
,
C.
, 2001, “
Chebyshev Polynomials in the Study of Transverse Vibrations of Nonuniform Rectangular Orthotropic Plates
,”
Shock Vib. Dig.
0583-1024,
33
(
2
), pp.
103
112
.
31.
Biancolini
,
M. E.
,
Brutti
,
C.
, and
Reccia
,
L.
, 2005, “
Approximate Solution for Free Vibration of Thin Orthotropic Rectangular Plates
,”
J. Sound Vib.
0022-460X,
288
(
1–2
), pp.
321
344
.
32.
Leissa
,
A. W.
, 1969,
Vibration of Plates
,
Government Printing Office
,
Washington, DC
, NASA SP-160.
33.
Jain
,
R. K.
, and
Soni
,
S. R.
, 1973, “
Free Vibration of Rectangular Plates of Parabolically Varying Thickness
,”
Indian J. Pure Appl. Math.
0019-5588,
4
(
3
), pp.
267
277
.
34.
Gutierrez
,
R. H.
, and
Laura
,
P. A. A.
, 1994, “
Vibrations of Rectangular Plates With Linearly Varying Thickness and Non-Uniform Boundary Conditions
,”
J. Sound Vib.
0022-460X,
178
(
4
), pp.
563
566
.
You do not currently have access to this content.