This paper extends previous analytical models of simple, single-stage planetary gears to compound, multi-stage planetary gears. This model is then used to investigate the structured vibration mode and natural frequency properties of compound planetary gears of general description, including those with equally spaced planets and diametrically opposed planet pairs. The well-defined cyclic structure of simple, single-stage planetary gears is shown to be preserved in compound, multi-stage planetary gears. The vibration modes are classified into rotational, translational, and planet modes and the unique properties of each type are examined and proved for general compound planetary gears. All vibration modes fall into one of these three categories. For most cases, both the properties of the modes and the modes themselves are shown to be insensitive to relative planet positions between stages of a multi-stage system.

1.
Smith
,
J. D.
, 1983,
Gears and Their Vibration: A Basic Approach to Understanding Gear Noise
,
Marcel-Dekker
,
New York
.
2.
Lynwander
,
P.
, 1983,
Gear Drive Systems: Design and Application
,
Marcel-Dekker
,
New York
.
3.
Kahraman
,
A.
, 2001, “
Free Torsional Vibration Characteristics of Compound Planetary Gear Sets
,”
Mech. Mach. Theory
0094-114X,
36
, pp.
953
971
.
4.
Lin
,
J.
, and
Parker
,
R. G.
, 1999, “
Analytical Characterization of the Unique Properties of Planetary Gear Free Vibration
,”
ASME J. Vibr. Acoust.
0739-3717,
121
, pp.
316
321
.
5.
Sun
,
T.
, and
Hu
,
H. Y.
, 2003, “
Nonlinear Dynamics of a Planetary Gear System with Multiple Clearances
,”
Mech. Mach. Theory
0094-114X,
38
, pp.
1371
1390
.
6.
Saada
,
A.
, and
Velex
,
P.
, 1995, “
An Extended Model for the Analysis of the Dynamic Behavior of Planetary Trains
,”
ASME J. Mech. Des.
0161-8458,
117
, pp.
241
247
.
7.
Wu
,
X.
, and
Parker
,
R. G.
, 2006, “
Modal Properties of Planetary Gears With an Elastic Continuum Ring Gear
,”
ASME J. Appl. Mech.
0021-8936, submitted.
8.
Parker
,
R. G.
,
Agashe
,
V.
, and
Vijayakar
,
S. M.
, 2000, “
Dynamic Response of a Planetary Gear System Using a Finite Element/Contact Mechanics Model
,”
ASME J. Mech. Des.
0161-8458,
122
, pp.
305
311
.
9.
Ambarisha
,
V. K.
, and
Parker
,
R. G.
, 2006, “
Suppression of Planet Mode Response in Planetary Gear Dynamics Through Mesh Phasing
,”
ASME J. Vibr. Acoust.
0739-3717,
128
, pp.
133
142
.
10.
Ambarisha
,
V. K.
, and
Parker
,
R. G.
, 2006, “
Nonlinear Dynamics of Planetary Gears Using Analytical and Finite Element Models
,”
J. Sound Vib.
0022-460X, in press.
11.
Kahraman
,
A.
, 1994, “
Natural Modes of Planetary Gear Trains
,”
J. Sound Vib.
0022-460X,
173
(
1
), pp.
125
130
.
12.
Lin
,
J.
, and
Parker
,
R. G.
, 2000, “
Structured Vibration Characteristics of Planetary Gears with Unequally Spaced Planets
,”
J. Sound Vib.
0022-460X,
233
(
5
), pp.
921
928
.
13.
Lin
,
J.
, and
Parker
,
R. G.
, 2001, “
Natural Frequency Veering in Planetary Gears
,”
Mech. Struct. Mach.
0890-5452,
29
(
4
), pp.
411
429
.
14.
Parker
,
R. G.
, 2000, “
A Physical Explanation for the Effectiveness of Planet Phasing to Suppress Planetary Gear Vibration
,”
J. Sound Vib.
0022-460X,
236
(
4
), pp.
561
573
.
15.
Lin
,
J.
, and
Parker
,
R. G.
, 1999, “
Sensitivity of Planetary Gear Natural Frequencies and Vibration Modes to Model Parameters
,”
J. Sound Vib.
0022-460X,
228
(
1
), pp.
109
128
.
16.
Cunliffe
,
F.
,
Smith
,
J. D.
, and
Welbourn
,
D. B.
, 1974, “
Dynamic Tooth Loads in Epicyclic Gears
,”
J. Eng. Ind.
0022-0817,
96
(
2
), pp.
578
584
.
17.
Müller
,
H. W.
, 1982,
Epicyclic Drive Trains: Analysis, Synthesis, and Applications
, Translated from German by Manhardt, W. G.,
Wayne State University Press
,
Detroit, MI
.
18.
Seager
,
D. L.
, 1975, “
Conditions for the Neutralization of Excitation by the Teeth in Epicyclic Gearing
,”
J. Mech. Eng. Sci.
0022-2542,
17
(
5
), pp.
293
298
.
19.
Kahraman
,
A.
, and
Blankenship
,
G. W.
, 1994, “
Planet Mesh Phasing in Epicyclic Gear Sets
,”
Proceedings of International Gearing Conference
,
Newcastle, UK
, pp.
99
104
.
20.
Kahraman
,
A.
,
Kharazi
,
A. A.
, and
Umrani
,
M.
, 2003, “
A Deformable Body Dynamic Analysis of Planetary Gears With Thin Rims
,”
J. Sound Vib.
0022-460X,
262
, pp.
752
768
.
21.
Lin
,
J.
, and
Parker
,
R. G.
, 2002, “
Planetary Gear Parametric Instability Caused by Mesh Stiffness Variation
,”
J. Sound Vib.
0022-460X,
249
(
1
), pp.
129
145
.
22.
Velex
,
P.
, and
Flamand
,
P.
, 1996, “
Dynamic Response of Planetary Trains to Mesh Parametric Excitations
,”
ASME J. Mech. Des.
0161-8458,
118
, pp.
7
14
.
You do not currently have access to this content.