This paper presents a robust control scheme for a class of uncertain chaotic systems. The proposed feedback controller is composed by an uncertainty estimator and a backstepping feedback, so its implementation is quite simple and can be made on the basis of the measured signal. The developed control scheme allows chaos suppression despite uncertainties in the model as well as unmeasured disturbances. The Chua and Φ6-Duffing are used to illustrate the performance of the proposed controller.

1.
Bai-Lin
,
H.
, 1990,
Chaos II
,
World Scientific
, Singapore.
2.
Ott
,
E.
,
Grebogi
,
C.
, and
Yorke
,
J. A.
, 1990, “
Controlling Chaos
,”
Phys. Rev. Lett.
0031-9007,
64
(
2
), pp.
1196
1199
.
3.
Chen
,
G.
, 1999,
Controlling Chaos and Bifurcation in Engineering Systems
,
CRC Press
, Boca Raton.
4.
Kapitaniak
,
K.
, 1996,
Controlling chaos
,
Academic
, New York.
5.
Ostojic
,
M.
, 1996, “
Numerical Approach to Nonlinear Control Design
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
118
(
4
), pp.
332
337
.
6.
di Bernado
,
M.
, 1996, “
A Purely Adaptive Controller to Synchronize and Control Chaotic Systems
,”
Phys. Lett. A
0375-9601,
214
(
5
), pp.
139
144
.
7.
Fradkov
,
A. L.
, and
Pogromsky
,
A. Y.
, 1996, “
Speed Gradient Control of Chaotic Continuous-Time Systems
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122,
43
(
11
), pp.
907
914
.
8.
Femat
,
R.
,
Alvarez-Ramirez
,
J.
, and
Gonzalez
,
J.
, 1997, “
A Strategy to Control Chaos in Nonlinear Driven Oscillators
,”
Phys. Lett. A
0375-9601,
224
(
5
), pp.
271
281
.
9.
Femat
,
R.
,
Alvarez-Ramirez
,
J.
,
Castillo-Toledo
,
B.
, and
Gonzalek
,
J.
, 1999, “
On Robust Chaos Suppression in a Class of Nondriven Oscillators: Application to the Chua’s Circuit
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122,
46
(
15
), pp.
1150
1152
.
10.
Bowong
,
S.
, and
Moukam Kakmeni
,
F. M.
, 2003, “
Chaos Control and Duration Time of Uncertain Chaotic Systems
,”
Phys. Lett. A
0375-9601,
316
(
8
), pp.
206
217
.
11.
Mossayi
,
F.
,
Qammar
,
H. K.
, and
Hartley
,
T. T.
, 1991, “
Adaptive Estimation and Synchronization Chaotic Systems
,”
Phys. Lett. A
0375-9601,
161
(
3
), pp.
255
262
.
12.
Boscovic
,
J. D.
, 1995, “
Stable Adaptive Control of a Class of First-Order Nonlinearly Parametrized Plants
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122,
118
(
6
), pp.
347
351
.
13.
Narenda
,
K. S.
, and
Annaswamy
,
A. M.
, 1989,
Stable Adaptive Systems
,
Prentice-Hall
, Englewood Cliffs, NJ.
14.
Christini
,
D. J.
, and
Collins
,
J. J.
, 1997, “
Real-Time, Adaptive, Model-Independent Control of Low-Dimensional Chaotic and Nonchaotic Dynamical Systems
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122,
44
(
10
), pp.
1027
1036
.
15.
Krstic
,
M.
,
Kanellakopoulos
,
K.
, and
Kokotovic
,
P.
, 1995,
Nonlinear and adaptive control design
,
John Wiley
, New York.
16.
Slotine
,
J. E.
, and
Li
,
W.
, 1990,
Applied nonlinear control
,
Prentice-Hall
, Englewood Cliffs, NJ.
17.
Bowong
,
S.
, and
Moukam Kakmeni
,
F. M.
, 2004, “
Synchronization of Uncertain Chaotic Systems Via Backstepping Approach
,”
Chaos, Solitons Fractals
0960-0779,
21
(
2
), pp.
1093
1108
.
18.
Isidori
,
A.
, 1995,
Nonlinear Control Systems
,
Springer-Verlag
, London, U.K.
19.
Madan
,
R. N.
, 1993,
Chua’s circuit: A Paradigm for Chaos
,
World Scientific
, Singapore.
20.
Debnath
,
M.
, and
Chowdhury
,
A. R.
, 1991, “
Period Doubling and Hysteresis in a Periodically Forced, Damped Anharmonic Oscillator
,”
Phys. Rev. A
1050-2947,
44
(
1
), pp.
1049
1059
.
You do not currently have access to this content.