This paper presents a robust control scheme for a class of uncertain chaotic systems. The proposed feedback controller is composed by an uncertainty estimator and a backstepping feedback, so its implementation is quite simple and can be made on the basis of the measured signal. The developed control scheme allows chaos suppression despite uncertainties in the model as well as unmeasured disturbances. The Chua and -Duffing are used to illustrate the performance of the proposed controller.
Issue Section:
Technical Papers
1.
Bai-Lin
, H.
, 1990, Chaos II
, World Scientific
, Singapore.2.
Ott
, E.
, Grebogi
, C.
, and Yorke
, J. A.
, 1990, “Controlling Chaos
,” Phys. Rev. Lett.
0031-9007, 64
(2
), pp. 1196
–1199
.3.
Chen
, G.
, 1999, Controlling Chaos and Bifurcation in Engineering Systems
, CRC Press
, Boca Raton.4.
Kapitaniak
, K.
, 1996, Controlling chaos
, Academic
, New York.5.
Ostojic
, M.
, 1996, “Numerical Approach to Nonlinear Control Design
,” Trans. ASME, J. Appl. Mech.
0021-8936, 118
(4
), pp. 332
–337
.6.
di Bernado
, M.
, 1996, “A Purely Adaptive Controller to Synchronize and Control Chaotic Systems
,” Phys. Lett. A
0375-9601, 214
(5
), pp. 139
–144
.7.
Fradkov
, A. L.
, and Pogromsky
, A. Y.
, 1996, “Speed Gradient Control of Chaotic Continuous-Time Systems
,” IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122, 43
(11
), pp. 907
–914
.8.
Femat
, R.
, Alvarez-Ramirez
, J.
, and Gonzalez
, J.
, 1997, “A Strategy to Control Chaos in Nonlinear Driven Oscillators
,” Phys. Lett. A
0375-9601, 224
(5
), pp. 271
–281
.9.
Femat
, R.
, Alvarez-Ramirez
, J.
, Castillo-Toledo
, B.
, and Gonzalek
, J.
, 1999, “On Robust Chaos Suppression in a Class of Nondriven Oscillators: Application to the Chua’s Circuit
,” IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122, 46
(15
), pp. 1150
–1152
.10.
Bowong
, S.
, and Moukam Kakmeni
, F. M.
, 2003, “Chaos Control and Duration Time of Uncertain Chaotic Systems
,” Phys. Lett. A
0375-9601, 316
(8
), pp. 206
–217
.11.
Mossayi
, F.
, Qammar
, H. K.
, and Hartley
, T. T.
, 1991, “Adaptive Estimation and Synchronization Chaotic Systems
,” Phys. Lett. A
0375-9601, 161
(3
), pp. 255
–262
.12.
Boscovic
, J. D.
, 1995, “Stable Adaptive Control of a Class of First-Order Nonlinearly Parametrized Plants
,” IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122, 118
(6
), pp. 347
–351
.13.
Narenda
, K. S.
, and Annaswamy
, A. M.
, 1989, Stable Adaptive Systems
, Prentice-Hall
, Englewood Cliffs, NJ.14.
Christini
, D. J.
, and Collins
, J. J.
, 1997, “Real-Time, Adaptive, Model-Independent Control of Low-Dimensional Chaotic and Nonchaotic Dynamical Systems
,” IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122, 44
(10
), pp. 1027
–1036
.15.
Krstic
, M.
, Kanellakopoulos
, K.
, and Kokotovic
, P.
, 1995, Nonlinear and adaptive control design
, John Wiley
, New York.16.
Slotine
, J. E.
, and Li
, W.
, 1990, Applied nonlinear control
, Prentice-Hall
, Englewood Cliffs, NJ.17.
Bowong
, S.
, and Moukam Kakmeni
, F. M.
, 2004, “Synchronization of Uncertain Chaotic Systems Via Backstepping Approach
,” Chaos, Solitons Fractals
0960-0779, 21
(2
), pp. 1093
–1108
.18.
Isidori
, A.
, 1995, Nonlinear Control Systems
, Springer-Verlag
, London, U.K.19.
Madan
, R. N.
, 1993, Chua’s circuit: A Paradigm for Chaos
, World Scientific
, Singapore.20.
Debnath
, M.
, and Chowdhury
, A. R.
, 1991, “Period Doubling and Hysteresis in a Periodically Forced, Damped Anharmonic Oscillator
,” Phys. Rev. A
1050-2947, 44
(1
), pp. 1049
–1059
.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.