The paper describes a method of combined expansion and orthogonalization (CEO) of experimental modeshapes. Most model updating and error localization methods require a set of full length, orthogonal with respect to the mass matrix, eigenvectors. In practically every modal experiment, the number of measurements is less than the order of the model, and hence modeshape expansion, i.e., adding the unmeasured degrees of freedom, is required. This step is then followed by orthogonalization with respect to the mass matrix. Most current methods use two separate steps for expansion and orthogonalization, each one optimal by itself, but their combination is not optimal. The suggested method combines the two steps into one optimization problem for both steps, and minimizes a quadratic criterion. In the case of an equal number of analytical and experimental modeshapes, the problem coincides with the Procrustes problem and has a closed form solution. Otherwise the solution involves nonlinear equations. Several examples show the advantage of CEO, especially in cases where the measurements are limited either in number or in space, i.e., not spanned through the entire structure.

1.
Lallement
,
G.
,
Piranda
,
J. G.
, and
Cogan
,
S.
, 1991, “
Parametric Correction of Finite Element Models By Minimization of an Output Residual: Improvement of The Sensitivity Method
,”
Proceedings of the 9th International Modal Analysis Conference
,
Florence
, Italy, pp.
363
368
.
2.
Link
,
M.
, 1998, “
Updating Analytical Models by using Local and Global Parameters and Relaxed Optimisation Requirements
,”
Mech. Syst. Signal Process.
0888-3270,
12
, pp.
7
22
.
3.
Baruch
,
M.
, and
Bar Itzhack
,
Y.
, 1978, “
Optimal Weighted Orthogonalization of Measured Modes
,”
AIAA J.
0001-1452,
16
, pp.
346
351
.
4.
Berman
,
A.
, and
Nagy
,
E. J.
, 1983, “
Improvement of a Large Analytical Model using Test Data
,”
AIAA J.
0001-1452,
21
(
8
), pp.
1168
1173
.
5.
Kenigsbuch
,
R.
, and
Halevi
,
Y.
, 1998, “
Model Updating in Structural Dynamics: A Generalized Reference Basis Approach
,”
Mech. Syst. Signal Process.
0888-3270,
12
, pp.
75
90
.
6.
Halevi
,
Y.
, and
Bucher
,
I.
, 2003, “
Model Updating via Weighted Reference Basis with Connectivity Constraints
,”
J. Sound Vib.
0022-460X,
265
, pp.
561
581
.
7.
Lieven
,
N. A.
, and
Ewins
,
D. J.
, 1990, “
Error Localization and Updating Finite Element Models Using Singular Value Decomposition
,” IMAC 8, Kissimmee, FL, pp.
768
773
.
8.
Friswell
,
M. I.
, and
Mottershead
,
J. E.
, 1995,
Finite Element Model Updating in Structural Dynamics
,
Kluwer Academic
, Dordrecht, The Netherlands.
9.
Maia
,
N. M. M.
, and
Silva
,
J. M. M.
, (Eds.), 1997,
Theoretical and Experimental Modal Analysis
,
Research Study Press
, Baldoc, England.
10.
Imregun
,
M.
, and
Ewins
,
D. J.
, 1993, “
An Investigation into Modeshape Expansion Techniques
,” IMAC 11, Kissimmee, FL, pp.
168
175
.
11.
Ng’andu
,
A. N.
,
Fox
,
C. H. J.
, and
Williams
,
E. G.
, 1995, “
On the Estimation of Rotational Degrees of Freedom Using Spline Functions
,” IMAC 13, Nashville, TN, pp.
791
797
.
12.
Williams
,
E. G.
, and
Green
,
J. S.
, 1990, “
A Spatial Curve Fitting Technique for Estimating Rotational Degrees of Freedom
,” IMAC 8, Kissimmee, FL, pp.
376
381
.
13.
Kidder
,
R. L.
, 1973, “
Reduction of Structural Frequency Equations
,”
AIAA J.
0001-1452,
11
, p.
892
.
14.
Guyan
,
R. J.
, 1965, “
Reduction of stiffness and mass matrices
,”
AIAA J.
0001-1452,
3
(
2
), p.
280
.
15.
Gysin
,
H.-P.
, 1990, “
Comparison of Expansion Methods for FE Modeling Error Localization
,” IMAC 8, Kissimmee, FL, pp.
195
204
.
16.
O’Callahan
,
J.
,
Avitable
,
P.
, and
Riemer
,
R.
, 1989, “
System Equivalent Reduction Expansion Process
,” IMAC 7, Las Vegas, NV, pp.
17
21
.
17.
Lipkins
,
J.
, and
Vandeurzen
,
U.
, 1987, “
The Use of Smoothing Techniques for Structural Modification Application
,”
Proceedings of the 12th International Seminar on Modal Analysis
,
Leuven
, Belgium.
S1
3
.
18.
Link
,
M.
, 1999, “
Updating of Analytical Models—Basic Procedures and Extensions
,” in
Modal Analysis and Testing
,
J. M. M.
Silva
and
N. M. M.
Maia
, eds.,
Nato Science Series
,
Kluwer Academic
, Dordrecht.
19.
Smith
,
S. W.
, and
Beattie
,
C. A.
, 1990, “
Simultaneous expansion and orthogonalization of measured modes for system identification
,”
Proceedings of AIAA Dynamics Specialist Conference
,
Long Beach
, CA, AIAA PAPER 90-1218 (AIAA Accession no. 26802).
20.
Beattie
,
C. A.
, and
Smith
,
S. W.
, 1992, “
Optimal matrix approximants in structural identification
,”
J. Optim. Theory Appl.
0022-3239,
74
(
1
), pp.
23
56
.
21.
Golub
,
G. H.
, and
Van Loan
,
C. F.
, 1983,
Matrix Computation
,
The John Hopkins University Press
, Baltomre, MD.
22.
Higham
,
N. J.
, 1986, “
Computing the polar decomposition-with applications
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
7
, pp.
1160
1174
.
23.
Levin-West
,
M.
,
Minham
,
M.
, and
Kissil
,
A.
, 1994, “
Evaluation of mode shape expansion techniques for prediction
,” NASA report 94-158.
24.
Meirovitch
,
L.
, and
Kwak
,
M. K.
, 1991, “
Rayleigh-Ritz Based Substructure Synthesis for Flexible Multibody Systems
,”
AIAA J.
0001-1452,
29
(
5
), pp.
1709
1719
.
25.
Morales
,
C.
, 2000, “
Rayleigh-Ritz Based Substructure Synthesis for Multiply Supported Structures
,”
ASME J. Vibr. Acoust.
0739-3717,
122
(
1
), pp.
2
6
.
26.
Zigic’
,
D.
,
Watson
,
L. T.
,
Collins
,
E. G.
, and
Bernstein
,
D. S.
, 1992, “
Homotopy methods for solving the optimal projection equations for the H2 reduced order model problem
,”
Int. J. Control
0020-7179,
56
, pp.
173
191
.
27.
Halevi
,
Y.
,
Zlochevsky
,
A.
, and
Gilat
,
T.
, 1997, “
Parameter Dependent Reduced Order Models
,”
Int. J. Control
0020-7179,
66
, pp.
463
485
.
You do not currently have access to this content.