For gears and roller bearings, periodic impulses indicate that there are faults in the components. However, it is difficult to detect the impulses at the early stage of fault because they are rather weak and often immersed in heavy noise. Existing wavelet threshold de-noising methods do not work well because they use orthogonal wavelets, which do not match the impulse very well and do not utilize prior information on the impulse. A new method for wavelet threshold de-noising is proposed in this paper; it not only employs the Morlet wavelet as the basic wavelet for matching the impulse, but also uses the maximum likelihood estimation for thresholding by utilizing prior information on the probability density of the impulse. This method has performed excellently when used to de-noise mechanical vibration signals with a low signal-to-noise ratio.

1.
Harting
,
D. R.
,
1977
, “
Demodulated Resonance Analysis—A Powerful Incipient Failure Detection Technique
,”
ISA Trans.
,
17
, pp.
35
40
.
2.
Mcfadden
,
P. D.
, and
Smith
,
J. D.
,
1984
, “
The Vibration Monitoring of Rolling Element Bearings by High-frequency Resonance Technique—A Review
,”
Tribol. Int.
,
17
, pp.
3
10
.
3.
Mallat
,
S.
, and
Hwuang
,
W.
,
1992
, “
Singularity Detection and Processing With Wavelets
,”
IEEE Trans. Inf. Theory
,
32
(
2
), pp.
617
643
.
4.
Donoho
,
D. L.
,
1995
, “
De-noising by Soft-Thresholding
,”
IEEE Trans. Inf. Theory
,
41
(
3
), pp.
613
627
.
5.
Donoho
,
D. L.
, and
Johnstone
,
I. M.
,
1994
, “
Ideal Spatial Adaptation by Wavelet Shrinkage
,”
Biometrika
,
81
(
3
), pp.
425
455
.
6.
Gao, H. Y., and Bruce, A. G., 1996. “WaveShrink With Firm Shrinkage,” Technical Report 39, StatSci Division of Mathsoft Inc.
7.
Bruce, A. G., Donoho, D. L. et al., 1994, “Smoothing and Robust Wavelet Analysis,” COMPSTAT, Proceedings in Computational Statistics, 11th Symposium, pp. 531–547.
8.
Johnstone
,
I. M.
, and
Silverman
,
B. W.
,
1997
, “
Wavelet Threshold Estimators for Data With Correlated Noise
,”
Journal of Royal Statistical Society Series B
,
59
(
2
), pp.
319
351
.
9.
Chipman
,
H. A.
,
Kolaczyk
,
E. D.
, and
Mcculloch
,
R. E.
,
1997
, “
Adaptive Bayesian Wavelet Shrinkage
,”
J. Am. Stat. Assoc.
,
92
(
440
), pp.
1413
1421
.
10.
Pan
,
Q.
,
Zhang
,
L.
,
Dai
,
G.
, and
Zhang
,
H.
,
1999
, “
Two Denoising Methods by Wavelet Transform
,”
IEEE Trans. Signal Process.
,
47
(
12
), pp.
3401
3406
.
11.
Sardy
,
S.
,
Tseng
,
P.
, et al.
,
2001
, “
Robust Wavelet Denoising
,”
IEEE Trans. Signal Process.
,
49
(
6
), pp.
1146
1152
.
12.
Lin
,
J.
, and
Qu
,
L.
,
2000
, “
Feature Extraction Based on Morlet Wavelet and Its Application for Mechanical Fault Diagnosis
,”
J. Sound Vib.
,
234
(
1
), pp.
135
148
.
13.
Fan
,
J. Q.
,
Hall
,
P.
,
Martin
,
M. A.
, and
Patil
,
P.
,
1996
, “
On Local Smoothing of Nonparametric Curve Estimators
,”
J. Am. Stat. Assoc.
,
91
, pp.
258
266
.
14.
Nason, G. P., 1995, “Choice of the Threshold Parameter in Wavelet Function Estimation,” Antoniadis, A., and Oppenheim, G., eds., Wavelets and Statistics, Vol. 103 of Lecture Notes in Statistics, pp. 261–280, Springer-Verlag, New York.
15.
Donoho
,
D. L.
, and
Johnstone
,
I. M.
,
1995
, “
Adapting to Unknown Smoothness via Wavelet Shrinkage
,”
J. Am. Stat. Assoc.
,
90
, pp.
1200
1224
.
16.
Neumann, M. H., and von Sachs, R., 1995, “Wavelet Thresholding: Beyond the Gaussian i.i.d. Situation,” Wavelets and Statistics, Vol. 103 of Lecture Notes in Statistics, pp. 281–300, Springer-Verlag.
17.
Berkner, K., and Wells, R. O., Jr., 1998, “A Correlation-dependent Model for De-noising via Nonorhogonal Wavelet Transforms,” Technical Report CML TR98-07, Computational Mathematics Laboratory, Rice University, US.
18.
Hyvarinen
,
A.
,
1999
, “
Sparse Code Shrinkage: Denoising of Nongaussian Data by Maximum Likelihood Estimation
,”
Neural Comput.
,
11
(
7
), pp.
1739
1768
.
19.
The Mathworks Inc., Wavelet Toolbox User’s Guide-for Use with Matlab, 1999.
20.
Daubechies
,
I.
,
1988
, “
Orthogonal Bases of Compactly Support Wavelets
,”
Communications of Pure and Applied Mathematics
,
41
(
7
), pp.
909
996
.
21.
Vidakovic, B., 1999, Statistical Modeling by Wavelets, Wiley-Interscience Publication.
22.
McFadden
,
P. D.
, and
Toozhy
,
M. M.
,
2000
, “
Application of Synchronous Averaging to Vibration Monitoring of Rolling Element Bearings
,”
Mech. Mach. Theory
,
14
(
6
), pp.
891
906
.
You do not currently have access to this content.