The dynamic response of a parametrically excited cantilever beam with a pendulum is theoretically and experimentally presented. The equation of motion and the associated boundary conditions are derived considering the static friction of the rotating motion at the supporting point (pivot) of the pendulum. It is theoretically shown that the static friction at the pivot of the pendulum plays a dominant role in the suppression of parametric resonance. The boundary conditions are different between two states in which the motion of the pendulum is either trapped by the static friction or it is not. Because of this variation of the boundary conditions depending on the pendulum motion, the natural frequencies of the system are automatically and passively changed and the bifurcation set for the parametric resonance is also shifted, so that parametric resonance does not occur. Experimental results also verify the effect of the pendulum on the suppression of parametric resonance in the cantilever beam.

1.
Hatwal
,
H.
,
Mallik
,
A. K.
, and
Ghosh
,
A.
,
1983
, “
Forced Nonlinear Oscillations of an Autoparametric System-Part 1: Periodic Responses
,”
ASME J. Appl. Mech.
,
50
, pp.
657
662
.
2.
Banerjee
,
B.
,
Bajaj
,
A. K.
, and
Davies
,
P.
,
1996
, “
Resonant Dynamics of an Autoparametric System: a Study Using Higher-Order Averaging
,”
Int. J. Non-Linear Mech.
,
31
, No.
1
, pp.
21
39
.
3.
Yabuno
,
H.
,
Endo
,
Y.
, and
Aoshima
,
N.
,
1999
, “
Stabilization of 1/3-order Subharmonic Resonance Using an Autoparametric Vibration Absorber
,”
ASME J. Vibr. Acoust.
,
121
, pp.
309
315
.
4.
Tuer
,
K. L.
,
Duquette
,
A. P.
, and
Golnaraghi
,
M. F.
,
1993
, “
Vibration Control of a Flexible Beam Using a Rotational Internal Resonance Controller, Part I: Theoretical Development and Analysis
,”
J. Sound Vib.
,
167
(
1
), pp.
41
62
.
5.
Cartmell
,
M.
, and
Lawson
,
J.
,
1994
, “
Performance Enhancement of an Autoparametric Vibration Absorber by Means of Computer Control
,”
J. Sound Vib.
,
177
(
2
), pp.
173
195
.
6.
Cuvalci
,
O.
, and
Ertas
,
A.
,
1996
, “
Pendulum as Vibration Absorber for Flexible Structures
,”
ASME J. Vibr. Acoust.
,
118
, pp.
558
566
.
7.
Mustafa
,
G.
, and
Ertas
,
A.
,
1995
, “
Dynamics and Bifurcations of a Coupled Column-Pendulum Oscillator
,”
J. Sound Vib.
,
182
(
3
), pp.
393
413
.
8.
Anderson
,
T. J.
,
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1996
, “
Experimental Verification of the Importance of the Nonlinear Curvature in the Response of a Cantilever Beam
,”
ASME J. Vibr. Acoust.
,
118
, pp.
21
27
.
9.
Yabuno
,
H.
,
Ide
,
Y.
, and
Aoshima
,
N.
,
1998
, “
Nonlinear Analysis of a Parametrically Excited Cantilever Beam
,”
JSME Int. J.
,
41
(
3
), pp.
555
562
.
10.
Haxton
,
R. S.
, and
Barr
,
A. D. S.
,
1972
, “
The Autoparametric Vibration Absorber
,”
ASME J. Eng. Ind.
,
94
, pp.
119
125
.
11.
Crespo da Silva
,
M. R. M.
, and
Glynn
,
C. C.
,
1978
, “
Non-Linear Flexural-Flexural-Tensional Dynamics of Inextensional Beams-I
,”
Journal of Struct. Mech.
,
6
(
4
), pp.
437
448
.
12.
Folkman, S., Ferney, B., Bingham, J., and Dutson, J., 1996, “Friction and Impact Damping in a Truss Using Pinned Joints,” Guran, A., Pfeiffer, F., and Popp, K., eds., Dynamics with Friction (Series on Stability, Vibration and Control of Systems Series B: Vol. 7), World Scientific, Singapore, pp. 137–168.
13.
Yabuno, H., Oowada, R., and Aoshima, N., 1999, “Effect of Coulomb Damping on Buckling of a Simply Supported Beam,” Proc. of ASME Design Engineering Technical Conferences, DETC99/VIB-8056 and 12 pages in CD-ROM Proc.
14.
Nayfeh, A. H., and Mook, D. T., 1979, Nonlinear Oscillations, Wiley, New York, pp. 56–59.
15.
Yabuno
,
H.
, and
Nayfeh
,
A. H.
,
2001
, “
Nonlinear Normal Modes of a Parametrically Excited Cantilever Beam
,”
Nonlinear Dynamics
,
25
, pp.
65
77
.
16.
Nayfeh, A. H., 1981, Introduction to Perturbation Techniques, Wiley, New York, pp. 401–406.
17.
Yabuno
,
H.
,
1997
, “
Bifurcation Control of Parametrically Excited Duffing System by a Combined Linear-Plus-Nonlinear Feedback Control
,”
Nonlinear Dynamics
,
12
, pp.
263
274
.
18.
Yabuno
,
H.
,
Sakai
,
H.
, and
Aoshima
,
N.
,
1999
, “
Stabilization for the Parametric Resonance of a Magnetically Levitated Body
,”
Trans. Jpn. Soc. Mech. Eng.
,
65
, pp.
916
922
.
You do not currently have access to this content.