Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The unsteady flow structure of the rotating instability (RI) in a 1.5-stage axial compressor is investigated through experimental and numerical analyses. In the tested compressor, the total pressure rise of the rotor stagnates at a certain flow coefficient before it increases again toward a lower flowrate in a case involving a wide tip clearance. The RI appears beyond this stagnant point as the compressor is throttled. The RI indicates a gentle hump in the frequency spectra of wall pressure or the flow velocity near the tip in a range of approximately 20–40% of the blade-passing frequency. As the flowrate decreases, the mode order of the RI increases, in contrast to the more commonly reported tendency, while the propagation velocity remains constant. These features are well captured by detached eddy simulation (DES) of the half-annulus model, with which the unsteady flow structure is further investigated. At its onset, RI is formed by the collision of the tip leakage vortex onto the pressure surface of the adjacent blade and subsequent vortex segmentation. This vortex structure spans two blade passages and propagates in the direction opposite to the rotor rotation. As the compressor is throttled, RI becomes more dominated by the circumferential propagation of vortex breakdown of tip leakage vortices, which occur simultaneously among neighboring passages with slight phase differences. The mechanism is discussed in relation to the temporal change in the blade tip loading. The frequency of vortex shedding increases with the reduction in flowrate and thus the increase in the number of RI disturbances.

References

1.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors—Part I: Theoretical Compression System Model
,”
ASME J. Eng. Gas Turbines Power
,
98
(
2
), pp.
190
198
.
2.
Greitzer
,
E. M.
,
1976b
, “
Surge and Rotating Stall in Axial Flow Compressors—Part II: Experimental Results and Comparison With Theory
,”
ASME J. Eng. Gas Turbines Power
,
98
(
2
), pp.
199
211
.
3.
Day
,
I. J.
,
1993
, “
Stall Inception in Axial Flow Compressors
,”
ASME J. Turbomach.
,
115
(
1
), pp.
1
9
.
4.
Day
,
I. J.
, and
Cumpsty
,
N. A.
,
1978
, “
The Measurement and Interpretation of Flow Within Rotating Stall Cells in Axial Compressor
,”
J. Mech. Eng. Sci.
,
20
(
1
), pp.
101
114
.
5.
Mathioudakis
,
K.
, and
Breugelmans
,
F. A. E.
,
1985
, “Development of Small Rotating Stall in a Single Stage Axial Compressor.” ASME Paper No. 85-GT-227.
6.
Kameier
,
F.
, and
Neise
,
W.
,
1997
, “
Experimental Study of Tip Clearance Losses and Noise in Axial Turbomachines and Their Reduction
,”
ASME J. Turbomach.
,
119
(
3
), pp.
460
471
.
7.
Kameier
,
F.
, and
Neise
,
W.
,
1997
, “
Rotating Blade Flow Instability as a Source of Noise in Axial Turbomachines
,”
J. Sound Vib.
,
203
(
5
), pp.
833
853
.
8.
Mailach
,
R.
,
Lehmann
,
I.
, and
Vogeler
,
K.
,
2001
, “
Rotating Instabilities in an Axial Compressor Originating From the Fluctuating Blade tip Vortex
,”
ASME J. Turbomach.
,
123
(
3
), pp.
453
460
.
9.
März
,
J.
,
Hah
,
C.
, and
Neise
,
W.
,
2002
, “
An Experimental and Numerical Investigation Into the Mechanisms of Rotating Instability
,”
ASME J. Turbomach.
,
124
(
3
), pp.
367
374
.
10.
Pardowitz
,
B.
,
Tapken
,
U.
, and
Enghardt
,
L.
,
2012
, “
Time-Resolved Rotating Instability Waves in an Annular Cascade
,”
18th AIAA/CEAS Aeroacoustics Conference
, AIAA2012-2132.
11.
Pardowitz
,
B.
,
Tapken
,
U.
,
Sorge
,
R.
,
Thamsen
,
P. U.
, and
Enghardt
,
L.
,
2014
, “
Rotating Instability in an Annular Cascade: Detailed Analysis of the Instationary Flow Phenomena
,”
ASME J. Turbomach.
,
136
(
6
), p.
061017
.
12.
Yamada
,
K.
,
Kikuta
,
H.
,
Furukawa
,
M.
,
Gunjishima
,
S.
, and
Hara
,
Y.
,
2013
, “
Effects of Tip Clearance on the Stall Inception Process in an Axial Compressor Rotor
,”
Proceedings of ASME Turbo Expo 2013
, GT2013-95479.
13.
Eck
,
M.
,
Geist
,
S.
, and
Peitsch
,
D.
,
2017
, “
Physics of Prestall Propagating Disturbances in Axial Compressors and Their Potential as a Stall Warning Indicator
,”
J. Appl. Sci.
,
7
(
3
), pp.
1
15
.
14.
Yang
,
Z.
,
Wu
,
Y.
, and
Ouyang
,
H.
,
2022
, “
Investigation on Mode Characteristics of Rotating Instability and Rotating Stall in an Axial Compressor
,”
ASME J. Turbomach.
,
144
(
6
), p.
061010
.
15.
Stapelfeldt
,
S.
, and
Brandstetter
,
C.
,
2022
, “
Suppression of Nonsynchronous Vibration Through Intentional Aerodynamic and Structural Mistuning
,”
ASME J. Turbomach.
,
144
(
2
), p.
021008
.
16.
Chen
,
X.
,
Koppe
,
B.
,
Lange
,
M.
,
Chu
,
W.
, and
Mailach
,
R.
,
2023
, “
Influence of Casing Groove on Rotating Instabilities in a Low-Speed Axial Compressor
,”
ASME J. Turbomach.
,
145
(
7
), p.
071015
.
17.
Chen
,
X.
,
Koppe
,
B.
,
Lange
,
M.
,
Chu
,
W.
, and
Mailach
,
R.
,
2021
, “
Rotating Instabilities in a Low-Speed Single Compressor Rotor Row With Varying Blade Tip Clearance
,”
Engines
,
14
(
24
), p.
8369
.
18.
Eck
,
M.
,
Rückert
,
R.
,
Peitsch
,
D.
, and
Lehmann
,
M.
,
2020
, “
Prestall Instability in Axial Flow Compressors
,”
ASME J. Turbomach.
,
142
(
7
), p.
071009
.
19.
Zhang
,
L. Y.
,
He
,
L.
, and
Stüer
,
H.
,
2013
, “
A Numerical Investigation of Rotating Instability in Steam Turbine Last Stage
,”
ASME J. Turbomach.
,
135
(
1
), p.
011009
.
20.
Wang
,
H.
,
Wu
,
Y.
, and
Ouyang
,
H.
,
2018
, “
Numerical Investigations of Rotating Instability and Unsteady Tip Vortex Structures in an Axial Compressor
,”
Proceedings of ASME Turbo Expo 2018
, GT2018-76821.
21.
Jungst
,
M.
,
Holzinger
,
F.
,
Leichtfuß
,
S.
, and
Schiffer
,
H.-P.
,
2015
, “
Analysing Non-Synchronous Blade Vibrations in a Transonic Compressor Rotor
,”
Proceedings of the ETC 2015, ETC2015-07
,
Madrid, Spain
,
Mar. 23–27
.
22.
Fujisawa
,
N.
,
Ohta
,
Y.
,
Yamagami
,
M.
,
Goto
,
T.
,
Kato
,
D.
,
2023
, “Unsteady Flow Mechanism of a Rotating Instability in a 1.5-Stage Axial Compressor.” GPPS-TC-2023-0266, GPPS Hong Kong.
23.
Kuroumaru
,
M.
,
Inoue
,
M.
,
Higaki
,
T.
,
Abd-Ellchalek
,
F. A.-E.
, and
Ikui
,
T.
,
1982
, “
Measurements of Three-Dimensional Flow Field Behind an Impeller by Means of Periodic Multi-Sampling of a Slanted Hot-Wire
,”
Bull. JSME
,
25
(
209
), pp.
1674
1681
.
24.
Shima
,
E.
, and
Kitamura
,
K.
,
2011
, “
Parameter-Free Simple Low-Dissipation AUSM-Family Scheme for All Speeds
,”
AIAA J.
,
49
(
8
), pp.
1693
1709
.
25.
van Leer
,
B.
,
1979
, “
Towards the Ultimate Conservative Difference Scheme V: A Second-Order Sequel to Godunov's Method
,”
J. Comput. Phys.
,
32
(
1
), pp.
101
136
.
26.
Shima
,
E.
,
1997
, “
A Simple Implicit Scheme for Structured/Unstructured CFD
,”
Proceedings of 29th Fluid Dynamic Conference (in Japanese)
,
Hokkaido, Tokyo
,
Sept. 24–25
, pp.
325
328
.
27.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
28.
Strelets
,
M.
,
2001
, “Detached Eddy Simulation of Massively Separated Flows,” AIAA Paper, 2001-0879.
29.
Taniguchi
,
K.
,
Nakamura
,
K.
,
Fujisawa
,
N.
,
Ohta
,
Y.
,
Yamagami
,
M.
,
Goto
,
T.
, and
Kato
,
D.
,
2022
, “
Unsteady Behavior of Tip Leakage Vortex on the Formation of Rotating Instability in an Axial Compressor
,”
Proceedings of ACGT 2022
, ACGT2022-0009.
30.
Delery
,
J. M.
,
1994
, “
Aspects of Vortex Breakdown
,”
Prog. Aerosp. Sci.
,
30
(
1
), pp.
1
59
.
31.
Seki
,
R.
,
Azuma
,
T.
,
Iwatani
,
J.
,
Nakaniwa
,
A.
,
Okui
,
H.
, and
Shibata
,
T.
,
2023
, “
Investigation of Tip Leakage Vortex Breakdown in a High-Speed Multistage Axial Compressor
,”
ASME J. Turbomach.
,
145
(
7
), p.
071017
.
32.
Yang
,
F.
,
Wu
,
Y.
,
Chen
,
Z.
,
Spence
,
S.
, and
Li
,
B.
,
2023
, “
The Unsteadiness of Tip Leakage Vortex Breakdown and Its Role in Rotating Instability
,”
Phys. Fluids
,
35
(
10
), p.
107108
.
You do not currently have access to this content.