Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In this work, proper orthogonal decomposition (POD) was applied to large eddy simulations (LES) of two high-loaded low-pressure turbine cascades under unsteady inflow to investigate entropy production in different parts of the blade passage. The turbulent kinetic energy (TKE) production, diffusion, and dissipation terms from the stagnation pressure transport equation were integrated over the computational domain. The POD-based method splits the contribution of different coherent flow dynamics to TKE production and dissipation, including the migration, bowing, tilting, and reorientation of incoming wake filaments, as well as the breakup of streaky structures in the blade boundary layer and the formation of Von Karman vortices in the blade wake. This helps designers identify the dominant POD modes (turbulent flow structures) responsible for loss generation, their dynamics, and the spatial locations where they act, providing insights into the physical phenomena to be controlled. Following this optimization strategy, a new low-pressure turbine profile was designed. After performing LES on the optimized geometry, POD results indicated the possibility of designing a higher-loaded profile with a lower global loss coefficient. Thanks to the stronger acceleration imposed on the bulk flow in the former part of the blade passage, the new loading distribution is shown to be responsible for lower upstream wake migration losses, as well as for a smaller amount of TKE production in the trailing edge wake zone, as a result of the early suction side boundary layer transition.

References

1.
Denton
,
J.
,
1993
, 11
Loss Mechanisms in Turbomachines
,”
American Society of Mechanical Engineers
, Paper No. 93-GT-435.
2.
Kameier
,
F.
, and
Neise
,
W.
,
1997
, “
Experimental Study of Tip Clearance Losses and Noise in Axial Turbomachines and Their Reduction
,”
ASME J. Turbomach.
,
119
(
3
), pp.
460
471
.
3.
Rose
,
M.
, and
Harvey
,
N.
,
2000
, “
Turbomachinery Wakes: Differential Work and Mixing Losses
,”
ASME J. Turbomach.
,
122
(
1
), pp.
68
77
.
4.
Stieger
,
R.
, and
Hodson
,
H.
,
2005
, “
The Unsteady Development of a Turbulent Wake Through a Downstream Low-Pressure Turbine Blade Passage
,”
ASME J. Turbomach.
,
127
(
2
), pp.
388
394
.
5.
Hodson
,
H.
, and
Howell
,
R.
,
2005
, “
Bladerow Interactions, Transition, and High-Lift Aerofoils in Low-Pressure Turbines
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
71
98
.
6.
Canepa
,
E.
,
Cattanei
,
A.
,
Mazzocut Zecchin
,
F.
,
Milanese
,
G.
, and
Parodi
,
D.
,
2013
, “
Experimental Study of the Effect of the Rotor–Stator Gap Variation on the Tonal Noise Generated by Low-Speed Axial Fans
,”
19th AIAA/CEAS Aeroacoustics Conference
,
Berlin, Germany
,
May 27–29
, p.
2046
.
7.
Sarkar
,
S.
, and
Voke
,
P.
,
2006
, “
Large-Eddy Simulation of Unsteady Surface Pressure Over a Low-Pressure Turbine Blade Due to Interactions of Passing Wakes and Inflexional Boundary Layer
,”
ASME J. Turbomach.
,
128
(
2
), pp.
221
231
.
8.
Sterzinger
,
P. Z.
,
Zerobin
,
S.
,
Merli
,
F.
,
Wiesinger
,
L.
,
Peters
,
A.
,
Maini
,
G.
,
Dellacasagrande
,
M.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2020
, “
Impact of Varying High- and Low-Pressure Turbine Purge Flows on a Turbine Center Frame and Low-Pressure Turbine System
,”
ASME J. Turbomach.
,
142
(
10
), p.
101011
.
9.
van de Wall
,
A.
,
Kadambi
,
J.
, and
Adamczyk
,
J.
,
2000
, “
A Transport Model for the Deterministic Stresses Associated With Turbomachinery Blade Row Interactions.
ASME Turbo Expo 2000: Power for Land, Sea, and Air
,
Munich, Germany
,
May 8–11
.
10.
Praisner
,
T.
,
Clark
,
J.
,
Nash
,
T.
,
Rice
,
M.
, and
Grover
,
E.
,
2006
, “
Performance Impacts Due to Wake Mixing in Axial-Flow Turbomachinery
,”
ASME Turbo Expo 2006: Power for Land, Sea, and Air
,
Barcelona, Spain
,
May 8–11
, pp.
1821
1830
.
11.
Binder
,
A.
,
Förster
,
W.
,
Kruse
,
H.
, and
Rogge
,
H.
,
1985
, “
An Experimental Investigation Into the Effect of Wakes on the Unsteady Turbine Rotor Flow
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
458
465
.
12.
Binder
,
A.
,
Schröeder
,
T.
, and
Hourmouziadis
,
J.
,
1989
, “
Turbulence Measurements in a Multistage Low-Pressure Turbine
,”
ASME J. Turbomach.
,
111
(
2
), pp.
153
161
.
13.
Wu
,
X.
,
Jacobs
,
R.
,
Hunt
,
J.
, and
Durbin
,
P.
,
1999
, “
Simulation of Boundary Layer Transition Induced by Periodically Passing Wakes
,”
J. Fluid Mech.
,
398
, pp.
109
153
.
14.
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2017
, “
Coherent Structures Formation During Wake-Boundary Layer Interaction on a LP Turbine Blade
,”
Flow Turbul. Combust.
,
98
(
1
), pp.
57
81
.
15.
Satta
,
F.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2014
, “
Loading Distribution Effects on Separated Flow Transition of Ultra-High-Lift Turbine Blades
,”
J. Propul Power
,
30
(
3
), pp.
845
856
.
16.
Simoni
,
D.
,
Ubaldi
,
M.
, and
Zunino
,
P.
,
2013
, “
Experimental Investigation of the Interaction Between Incoming Wakes and Instability Mechanisms in a Laminar Separation Bubble
,”
Exp. Therm. Fluid Sci.
,
50
, pp.
54
60
.
17.
Lumley
,
J. L.
,
1967
, “
The Structure of Inhomogeneous Turbulent Flows
,”
Atmospheric Turbulence and Radio Wave Propagation
, pp.
166
178
.
18.
Liu
,
Z.
,
Adrian
,
R.
, and
Hanratty
,
T.
,
2001
, “
Large-Scale Modes of Turbulent Channel Flow: Transport and Structure
,”
J. Fluid Mech.
,
448
, pp.
53
80
.
19.
van Oudheusden
,
B.
,
Scarano
,
F.
,
van Hinsberg
,
N.
, and
Watt
,
D.
,
2005
, “
Phase-Resolved Characterization of Vortex Shedding in the Near Wake of a Square-Section Cylinder at Incidence
,”
Exp. Fluids
,
39
(
1
), pp.
86
98
.
20.
Perrin
,
R.
,
Cid
,
E.
,
Cazin
,
S.
,
Sevrain
,
A.
,
Braza
,
M.
,
Moradei
,
F.
, and
Harran
,
G.
,
2007
, “
Phase-Averaged Measurements of the Turbulence Properties in the Near Wake of a Circular Cylinder at High Reynolds Number by 2c-piv and 3c-piv
,”
Exp. Fluids
,
42
(
1
), pp.
93
109
.
21.
Kurelek
,
J.
,
Lambert
,
A.
, and
Yarusevych
,
S.
,
2016
, “
Coherent Structures in the Transition Process of a Laminar Separation Bubble
,”
AIAA J.
,
54
(
8
), pp.
2295
2309
.
22.
Lengani
,
D.
,
Simoni
,
D.
,
Pichler
,
R.
,
Sandberg
,
R.
,
Michelassi
,
V.
, and
Bertini
,
F.
,
2018
, “
Identification and Quantification of Losses in a LPT Cascade by POD Applied to LES Data
,”
Int. J. Heat Fluid Flow
,
70
, pp.
28
40
.
23.
Dellacasagrande
,
M.
,
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Granata
,
A.
,
Giovannini
,
M.
,
Rubechini
,
F.
, and
Bertini
,
F.
,
2023
, “
Analysis of Unsteady Loss Sensitivity to Incidence Angle Variation in Low Pressure Turbine
,”
ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition
,
Boston, MA
,
June 26–30
.
24.
Canepa
,
E.
,
Lengani
,
D.
,
Nilberto
,
A.
,
Petronio
,
D.
,
Simoni
,
D.
,
Bertini
,
F.
, and
Rosa Taddei
,
S.
,
2022
, “
Flow Coefficient and Reduced Frequency Effects on Low Pressure Turbine Unsteady Losses
,”
J. Propul. Power
,
38
(
1
), pp.
18
29
.
25.
Dellacasagrande
,
M.
,
Sterzinger
,
P.Z.
,
Zerobin
,
S.
,
Merli
,
F.
,
Wiesinger
,
L.
,
Peters
,
A.
,
Maini
,
G.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2019
, “
Unsteady Flow Interactions Between a High- and Low-Pressure Turbine: Part 2—Rotor-Synchronic Averaging and Proper Orthogonal Decomposition of the Unsteady Flow Fields
,”
ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
.
26.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbul. Combust.
,
62
(
3
), pp.
183
200
.
27.
Benhamadouche
,
S.
,
Jarrin
,
N.
,
Addad
,
Y.
, and
Laurence
,
D.
,
2006
, “
Synthetic Turbulent Inflow Conditions Based on a Vortex Method for Large-Eddy Simulation
,”
Prog. Comput. Fluid Dyn. Int. J.
,
6
(
1–3
), pp.
50
57
.
28.
Przytarski
,
P.
,
Lengani
,
D.
,
Simoni
,
D.
, and
Wheeler
,
A.
,
2024
, “
The Role of Turbulence Transport in Mechanical Energy Budgets
,”
ASME J. Turbomach.
,
146
(
10
), p.
101008
.
29.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures, Parts I, II and III
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
590
.
30.
Biassoni
,
D.
,
Russo
,
M.
,
Viviani
,
P.
,
Vitali
,
G.
, and
Lengani
,
D.
,
2024
, “
A High-Performance Code for Analyzing Loss Transport Equations in High-Fidelity Simulations
,”
ASME Turbo Expo 2024: Turbomachinery Technical Conference and Exposition
,
London, UK
,
June 24–28
.
31.
Leggett
,
J.
,
Priebe
,
S.
,
Shabbir
,
A.
,
Michelassi
,
V.
,
Sandberg
,
R.
, and
Richardson
,
E.
,
2018
, “
Loss Prediction in an Axial Compressor Cascade at Off-Design Incidences With Free Stream Disturbances Using Large Eddy Simulation
,”
ASME J. Turbomach.
,
140
(
7
), p.
071005
.
32.
Michelassi
,
V.
,
Chen
,
L.
,
Pichler
,
R.
,
Sandberg
,
R.
, and
Bhaskaran
,
R.
,
2016
, “
High-Fidelity Simulations of Low-Pressure Turbines: Effect of Flow Coefficient and Reduced Frequency on Losses
,”
ASME J. Turbomach.
,
138
(
11
), p.
111006
.
33.
Lengani
,
D.
,
Simoni
,
D.
,
Pichler
,
R.
,
Sandberg
,
R.
,
Michelassi
,
V.
, and
Bertini
,
F.
,
2019
, “
On the Identification and Decomposition of the Unsteady Losses in a Turbine Cascade
,”
ASME J. Turbomach.
,
141
(
3
), p.
031005
.
34.
Lengani
,
D.
,
Simoni
,
D.
,
Nilberto
,
A.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2018
, “
Synchronization of Multi-plane Measurement Data by Means of POD: Application to Unsteady Boundary Layer Transition
,”
Exp. Fluids
,
59
, pp.
1
18
.
35.
Simoni
,
D.
,
Berrino
,
M.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2015
, “
Off-Design Performance of a Highly Loaded Low Pressure Turbine Cascade Under Steady and Unsteady Incoming Flow Conditions
,”
ASME J. Turbomach.
,
137
(
7
), p.
071009
.
36.
Bellucci
,
J.
,
Granata
,
A.
,
Silei
,
M.
,
Giovannini
,
M.
,
Spano
,
E.
,
Notaristefano
,
A.
, and
Lengani
,
D.
,
2024
, “
A Real Time AI-Based Strategy for the Design of a Low-Pressure Turbine Profile
,”
ASME Turbo Expo 2024: Turbomachinery Technical Conference and Exposition
,
London, UK
,
June 24–28
.
37.
Lengani
,
D.
,
Simoni
,
D.
,
Pralits
,
J.
,
Ðurović
,
K.
,
De Vincentiis
,
L.
,
Henningson
,
D.
, and
Hanifi
,
A.
,
2022
, “
On the Receptivity of Low-Pressure Turbine Blades to External Disturbances
,”
J. Fluid Mech.
,
937
, p.
A36
.
38.
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
,
Bertini
,
F.
, and
Michelassi
,
V.
,
2017
, “
Accurate Estimation of Profile Losses and Analysis of Loss Generation Mechanisms in a Turbine Cascade
,”
ASME J. Turbomach.
,
139
(
12
), p.
121007
.
You do not currently have access to this content.