Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This paper develops a numerical procedure to accelerate the convergence of the Favre-averaged non-linear harmonic (FNLH) method. The scheme provides a unified mathematical framework for solving the sparse linear systems formed by the mean flow and the time-linearized harmonic flows of FNLH in an explicit or implicit fashion. The approach explores the similarity of the sparse linear systems of FNLH and leads to a memory-efficient procedure, so that its memory consumption does not depend on the number of harmonics to compute. The proposed method has been implemented in the industrial computational fluid dynamics solver Hydra. Three test cases are used to conduct a comparative study of explicit and implicit schemes in terms of convergence, computational efficiency, and memory consumption. Comparisons show that the implicit scheme yields better convergence than the explicit scheme and is also roughly 7–10 times more computationally efficient than the explicit scheme with four levels of multigrid. Furthermore, the implicit scheme consumes only approximately 50% of the memory required by the explicit scheme with four levels of multigrid. Compared with the full-annulus unsteady Reynolds-averaged Navier–Stokes simulations, the implicit scheme produces comparable results to URANS with computational time and memory consumption that are two orders of magnitude smaller.

References

1.
Cumpsty
,
N. A.
,
2004
,
Compressor Aerodynamics
, 2nd ed.,
Krieger Pub. Co
,
Malabar, FL
.
2.
He
,
L.
, and
Ning
,
W.
,
1998
, “
Efficient Approach for Analysis of Unsteady Viscous Flows in Turbomachines
,”
AIAA J.
,
36
(
11
), pp.
2005
2012
.
3.
Wang
,
F.
, and
di Mare
,
L.
,
2019
, “
Favre-Averaged Nonlinear Harmonic Method for Compressible Periodic Flows
,”
AIAA J.
,
57
(
3
), pp.
1133
1142
.
4.
Wang
,
F.
, and
di Mare
,
L.
,
2022
, “
Computation of Multistage Flows Using a Fourier Approach
,”
AIAA J.
,
60
(
1
), pp.
345
359
.
5.
Wang
,
F.
, and
di Mare
,
L.
,
2023
, “
Harmonic Method for Simulating Unsteady Multispool Interactions
,”
ASME J. Turbomach.
,
145
(
9
), p.
091005
.
6.
Wang
,
F.
, and
di Mare
,
L.
,
2020
, “
Efficient Approach for Simulating Aperiodic Flows Due to Geometry Distortions
,”
AIAA J.
,
58
(
3
), pp.
1278
1291
.
7.
Wang
,
F.
, and
di Mare
,
L.
,
2021
, “
Analysis of Transonic Bladerows With Non-Uniform Geometry Using the Spectral Method
,”
ASME J. Turbomach.
,
143
(
12
), p.
121012
.
8.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.
9.
Hall
,
K. C.
,
Ekici
,
K.
,
Thomas
,
J. P.
, and
Dowell
,
E. H.
,
2013
, “
Harmonic Balance Methods Applied to Computational Fluid Dynamics Problems
,”
Inter. J. Comput. Fluid Dyn.
,
27
(
2
), pp.
52
67
.
10.
Woodgate
,
M. A.
, and
Badcock
,
K. J.
,
2009
, “
Implicit Harmonic Balance Solver for Transonic Flow With Forced Motions
,”
AIAA J.
,
47
(
4
), pp.
893
901
.
11.
Su
,
X.
, and
Yuan
,
X.
,
2009
, “
Implicit Solution of Time Spectral Method for Periodic Unsteady Flows
,”
Int. J. Numer. Methods Fluids
,
63
(
7
), pp.
860
876
.
12.
Sicot
,
F.
,
Puigt
,
G.
, and
Montagnac
,
M.
,
2008
, “
Block-Jacobi Implicit Algorithms for the Time Spectral Method
,”
AIAA J.
,
46
(
12
), pp.
3080
3089
.
13.
Frey
,
C.
,
Ashcroft
,
G.
,
Kersken
,
H.-P.
, and
Voigt
,
C.
,
2014
, “
A Harmonic Balance Technique for Multistage Turbomachinery Applications
,”
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Düsseldorf, Germany
,
June 16–20
, American Society of Mechanical Engineers.
14.
Jameson
,
A.
,
1991
, “
Time Dependent Calculations Using Multigrid, With Applications to Unsteady Flows Past Airfoils and Wings
,”
10th Computational Fluid Dynamics Conference
,
Honolulu, HI
,
June 24–26
, American Institute of Aeronautics and Astronautics.
15.
Yoon
,
S.
, and
Jameson
,
A.
,
1988
, “
Lower-Upper Symmetric-Gauss-Seidel Method for the Euler and Navier-Stokes Equations
,”
AIAA J.
,
26
(
9
), pp.
1025
1026
.
16.
Saad
,
Y.
,
2003
,
Iterative Methods for Sparse Linear Systems
, 2nd ed.,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
17.
Campobasso
,
M. S.
, and
Giles
,
M. B.
,
2003
, “
Effects of Flow Instabilities on the Linear Analysis of Turbomachinery Aeroelasticity
,”
J. Propul. Power
,
19
(
2
), pp.
250
259
.
18.
Moinier
,
P.
,
1999
, “Algorithm Developments for an Unstructured Viscous Flow Solver,” Ph.D. thesis, Oxford University, Oxford, UK.
19.
Moinier
,
P.
,
Muller
,
J.-D.
, and
Giles
,
M. B.
,
2002
, “
Edge-Based Multigrid and Preconditioning for Hybrid Grids
,”
AIAA J.
,
40
(
10
), pp.
1954
1960
.
20.
Jameson
,
A.
,
Schmidt
,
W.
, and
Turkel
,
E.
,
1981,
, “
Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge Kutta Time Stepping Schemes
,”
14th Fluid and Plasma Dynamics Conference
,
Palo Alto, CA
,
June 23–25
, American Institute of Aeronautics and Astronautics.
21.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
30th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 6–9
, American Institute of Aeronautics and Astronautics.
22.
Swanson
,
R.
,
Turkel
,
E.
, and
Rossow
,
C.-C.
,
2007
, “
Convergence Acceleration of Runge–Kutta Schemes for Solving the Navier–Stokes Equations
,”
J. Comput. Phys.
,
224
(
1
), pp.
365
388
.
23.
Turkel
,
E.
,
1993
, “
Review of Preconditioning Methods for Fluid Dynamics
,”
Appl. Num. Math.
,
12
(
1–3
), pp.
257
284
.
24.
Moinier
,
P.
,
Muller
,
J.-D.
, and
Giles
,
M. B.
,
2002
, “
Edge-Based Multigrid and Preconditioning for Hybrid Grids
,”
AIAA J.
,
40
(
10
), pp.
1954
1960
.
25.
Misev
,
C.
,
2017
, “Development and Optimisation of an Implicit CFD Solver in Hydra,” Ph.D. thesis, University of Surrey, Guildford, UK.
26.
Hascoet
,
L.
, and
Pascual
,
V.
,
2013
, “
The Tapenade Automatic Differentiation Tool
,”
ACM Trans. Math. Soft.
,
39
(
3
), pp.
1
43
.
27.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD (Third Edition)
,
D C W Industries
,
La Cañada, CA
.
28.
Cebeci
,
T.
,
2004
,
Turbulence Models and their Application: Efficient Numerical Methods With Computer Programs
,
Springer
,
San Jose, CA
.
29.
Wang
,
F.
,
Carnevale
,
M.
, and
di Mare
,
L.
,
2018
, “
Numerical Study of Deterministic Fluxes in Compressor Passages
,”
ASME J. Turbomach.
,
140
(
10
), p.
101005
.
30.
Denton
,
J. D.
,
1992
, “
The Calculation of Three-Dimensional Viscous Flow Through Multistage Turbomachines
,”
ASME J. Turbomach.
,
114
(
1
), pp.
18
26
.
31.
Giles
,
M.
,
1988
, Non-Reflecting Boundary Conditions for the Euler Equations, Technical Report CFDL-TR-88-1 MIT.
32.
Misev
,
C.
, and
Hills
,
N. J.
,
2018
, “
Steepest Descent Optimisation of Runge–Kutta Coefficients for Second Order Implicit Finite Volume CFD Codes
,”
J. Comput. Phys.
,
354
(
1
), pp.
576
592
.
33.
Swanson
,
R. C.
, and
Turkel
,
E.
,
1997
, Multistage Schemes With Multigrid for Euler and Navier-Stokes Equations. NASA Technical Paper 3631 NASA Langley Research Center, Hampton, VA.
34.
Wang
,
F.
,
Carnevale
,
M.
,
di Mare
,
L.
, and
Gallimore
,
S.
,
2017
, “
Simulation of Multistage Compressor at Off-Design Conditions
,”
ASME J. Turbomach.
,
140
(
2
), p.
021011
.
35.
Wang
,
F.
, and
di Mare
,
L.
,
2017
, “
Mesh Generation for Turbomachinery Blade Passages With Three-Dimensional Endwall Features
,”
J. Propul. Power
,
33
(
6
), pp.
1459
1472
.
36.
Saxer
,
A. P.
, and
Giles
,
M. B.
,
1993
, “
Quasi-Three-Dimensional Nonreflecting Boundary Conditions for Euler Equations Calculations
,”
J. Propul. Power
,
9
(
2
), pp.
263
271
.
37.
Wang
,
Z.
,
Fidkowski
,
K.
,
Abgrall
,
R.
,
Bassi
,
F.
,
Caraeni
,
D.
,
Cary
,
A.
,
Deconinck
,
H.
, et al.,
2013
, “
High-Order CFD Methods: Current Status and Perspective
,”
Inter. J. Num. Methods Fluids
,
72
(
8
), pp.
811
845
.
38.
Povey
,
T.
,
Chana
,
K. S.
,
Jones
,
T. V.
, and
Hurrion
,
J.
,
2005
, “
The Effect of Hot-Streaks on HP Vane Surface and Endwall Heat Transfer: An Experimental and Numerical Study
,”
ASME J. Turbomach.
,
129
(
1
), pp.
32
43
.
You do not currently have access to this content.