Abstract

Gas turbines feature many components that require superalloys capable of handling extreme thermal environments. Increasing the selection of materials available for these components is important to their use in these extremely high-temperature environments. This study investigated two recently developed materials intended to be used for additive manufacturing (AM), with one superalloy based on cobalt and the other on nickel. Sets of four test coupons were built using the materials, in addition to the commonly used Inconel-718, on multiple laser powder bed fusion machines. Several build conditions were varied between coupon sets, including coupon orientation, contour settings, and upskin and downskin treatment. Each set of test coupons featured four unique cooling designs to explore how different cooling technologies would be impacted by the variations in build conditions. After being built, coupons were computed tomography (CT) scanned to determine accuracy to design intent and quantify the surface roughness. The CT scans indicated that horizontally built test coupons had a significantly higher deviation from design intent and higher surface roughness than those built vertically. Results also indicated that the cobalt-based alloy consistently had a smoother surface quality with lower surface roughness compared to the nickel-based alloy. After geometric characterization, the cooling performance of the test coupons was measured experimentally. Pressure losses were found to correlate with increases in surface roughness; however, in some cases, the convective heat transfer did not increase proportionally to the pressure loss as a result of surface features significantly blocking the flow without proportionally increasing convective heat transfer.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Saravanamuttoo
,
H. I. H.
,
Rogers
,
G.
,
Cohen
,
H.
, and
Straznicky
,
P.
,
2009
,
Gas Turbine Theory
,
Pearson Prentice Hall
,
Harlow, England; New York
.
2.
Konter
,
M.
, and
Thumann
,
M.
,
2001
, “
Materials and Manufacturing of Advanced Industrial Gas Turbine Components
,”
J. Mater. Process. Technol.
,
117
(
3
), pp.
386
390
.
3.
Wimmer
,
T.
,
Ruehmer
,
T.
,
Mick
,
Y.
,
Wang
,
L.
, and
Weigand
,
B.
,
2019
, “
Experimental and Numerical Investigation on an Additively Manufactured Gas Turbine Ring Segment With an In-Wall Cooling Scheme
,”
ASME Turbo Expo 2019
,
Phoenix, AZ
,
June 17–21
, pp.
1
9
.
4.
Sanchez
,
S.
,
Smith
,
P.
,
Xu
,
Z.
,
Gaspard
,
G.
,
Hyde
,
C. J.
,
Wits
,
W. W.
,
Ashcroft
,
I. A.
,
Chen
,
H.
, and
Clare
,
A. T.
,
2021
, “
Powder Bed Fusion of Nickel-Based Superalloys: A Review
,”
Int. J. Mach. Tools Manuf.
,
165
, p.
103729
.
5.
Gisario
,
A.
,
Kazarian
,
M.
,
Martina
,
F.
, and
Mehrpouya
,
M.
,
2019
, “
Metal Additive Manufacturing in the Commercial Aviation Industry: A Review
,”
J. Manuf. Syst.
,
53
, pp.
124
149
.
6.
Polonsky
,
A.
,
Francis
,
T.
,
Pusch
,
K.
,
Echlin
,
M.
,
Botman
,
A.
,
Randolph
,
S.
,
Geurts
,
R.
,
Filevich
,
J.
, and
Pollock
,
T.
,
2020
, “
3D Characterization of a Novel CoNi-Superalloy for Additive Manufacturing
,”
Microsc. Microanal.
,
26
(
S2
), pp.
1688
1690
.
7.
Snyder
,
J. C.
,
Stimpson
,
C. K.
,
Thole
,
K. A.
, and
Mongillo
,
D. J.
,
2015
, “
Build Direction Effects on Microchannel Tolerance and Surface Roughness
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111411
.
8.
Chen
,
Z.
,
Wu
,
X.
, and
Davies
,
C. H. J.
,
2021
, “
Process Variation in Laser Powder Bed Fusion of Ti-6Al-4 V
,”
Addit. Manuf.
,
41
, p.
101987
.
9.
Pakkanen
,
J.
,
Calignano
,
F.
,
Trevisan
,
F.
,
Lorusso
,
M.
,
Ambrosio
,
E. P.
,
Manfredi
,
D.
, and
Fino
,
P.
,
2016
, “
Study of Internal Channel Surface Roughnesses Manufactured by Selective Laser Melting in Aluminum and Titanium Alloys
,”
Metall. Mater. Trans. A
,
47
(
8
), pp.
3837
3844
.
10.
Wildgoose
,
A. J.
,
Thole
,
K. A.
,
Subramanian
,
R.
,
Kersting
,
L.
, and
Kulkarni
,
A.
,
2023
, “
Impacts of the Additive Manufacturing Process on the Roughness of Engine Scale Vanes and Cooling Channels
,”
ASME J. Turbomach.
,
145
(
4
), p.
041013
.
11.
Charles
,
A.
,
Elkaseer
,
A.
,
Thijs
,
L.
,
Hagenmeyer
,
V.
, and
Scholz
,
S.
,
2019
, “
Effect of Process Parameters on the Generated Surface Roughness of Down-Facing Surfaces in Selective Laser Melting
,”
Appl. Sci.
,
9
(
6
), p.
1256
.
12.
Calignano
,
F.
,
Manfredi
,
D.
,
Ambrosio
,
E. P.
,
Iuliano
,
L.
, and
Fino
,
P.
,
2013
, “
Influence of Process Parameters on Surface Roughness of Aluminum Parts Produced by DMLS
,”
Int. J. Adv. Manuf. Technol.
,
67
(
9–12
), pp.
2743
2751
.
13.
Tian
,
Y.
,
Tomus
,
D.
,
Rometsch
,
P.
, and
Wu
,
X.
,
2017
, “
Influences of Processing Parameters on Surface Roughness of Hastelloy X Produced by Selective Laser Melting
,”
Addit. Manuf.
,
13
, pp.
103
112
.
14.
Snyder
,
J. C.
, and
Thole
,
K. A.
,
2020
, “
Effect of Additive Manufacturing Process Parameters on Turbine Cooling
,”
ASME J. Turbomach.
,
142
(
5
), p.
051007
.
15.
Malekipour
,
E.
, and
El-Mounayri
,
H.
,
2018
, “
Common Defects and Contributing Parameters in Powder Bed Fusion AM Process and Their Classification for Online Monitoring and Control: A Review
,”
Int. J. Adv. Manuf. Technol.
,
95
(
1–4
), pp.
527
550
.
16.
Wang
,
D.
,
Liu
,
Y.
,
Yang
,
Y.
, and
Xiao
,
D.
,
2016
, “
Theoretical and Experimental Study on Surface Roughness of 316L Stainless Steel Metal Parts Obtained Through Selective Laser Melting
,”
Rapid Prototyp. J.
,
22
(
4
), pp.
706
716
.
17.
Zhang
,
T.
, and
Yuan
,
L.
,
2022
, “
Understanding Surface Roughness on Vertical Surfaces of 316 L Stainless Steel in Laser Powder Bed Fusion Additive Manufacturing
,”
Powder Technol.
,
411
, p.
117957
.
18.
Charles
,
A.
,
Elkaseer
,
A.
,
Paggi
,
U.
,
Thijs
,
L.
,
Hagenmeyer
,
V.
, and
Scholz
,
S.
,
2021
, “
Down-Facing Surfaces in Laser Powder Bed Fusion of Ti6Al4V: Effect of Dross Formation on Dimensional Accuracy and Surface Texture
,”
Addit. Manuf.
,
46
, p.
102148
.
19.
Zhou
,
Y. H.
,
Zhang
,
Z. H.
,
Wang
,
Y. P.
,
Liu
,
G.
,
Zhou
,
S. Y.
,
Li
,
Y. L.
,
Shen
,
J.
, and
Yan
,
M.
,
2019
, “
Selective Laser Melting of Typical Metallic Materials: An Effective Process Prediction Model Developed by Energy Absorption and Consumption Analysis
,”
Addit. Manuf.
,
25
, pp.
204
217
.
20.
Bassoli
,
E.
,
Sola
,
A.
,
Celesti
,
M.
,
Calcagnile
,
S.
, and
Cavallini
,
C.
,
2018
, “
Development of Laser-Based Powder Bed Fusion Process Parameters and Scanning Strategy for New Metal Alloy Grades: A Holistic Method Formulation
,”
Materials
,
11
(
12
), p.
2356
.
21.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Roughness Effects on Flow and Heat Transfer for Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051008
.
22.
Kirsch
,
K. L.
,
Snyder
,
J. C.
,
Stimpson
,
C. K.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2017
, “
Repeatability in Performance of Micro Cooling Geometries Manufactured With Laser Powder Bed Fusion
,”
53rd AIAA/SAE/ASEE Joint Propulsion Conference
,
Atlanta, GA
,
July 10–12
,
American Institute of Aeronautics and Astronautics
, pp.
1
14
.
23.
Murray
,
S. P.
,
Pusch
,
K. M.
,
Polonsky
,
A. T.
,
Torbet
,
C. J.
,
Seward
,
G. G. E.
,
Zhou
,
N.
,
Forsik
,
S. A. J.
, et al
,
2020
, “
A Defect-Resistant Co–Ni Superalloy for 3D Printing
,”
Nat. Commun.
,
11
(
1
), p.
4975
.
24.
Murray
,
S. P.
,
Raeker
,
E. B.
,
Pusch
,
K. M.
,
Frey
,
C.
,
Torbet
,
C. J.
,
Zhou
,
N.
,
Forsik
,
S. A. J.
, et al
,
2022
, “
Microstructure Evolution and Tensile Properties of a Selectively Laser Melted CoNi-Base Superalloy
,”
Metall. Mater. Trans. A
,
53
(
8
), pp.
2943
2960
.
25.
Zhou
,
N.
,
Dicus
,
A. D.
,
Forsik
,
S. A. J.
,
Wang
,
T.
,
Colombo
,
G. A.
, and
Epler
,
M. E.
,
2020
, “Development of a New Alumina-Forming Crack-Resistant High-Γ′ Fraction Ni-Base Superalloy for Additive Manufacturing,”
Superalloys 2020
,
S.
Tin
,
M.
Hardy
,
J.
Clews
,
J.
Cormier
,
Q.
Feng
,
J.
Marcin
,
C.
O'Brien
, and
A.
Suzuki
, eds.,
Springer International Publishing
,
Cham
, pp.
1046
1054
.
26.
Corbett
,
T.
,
Thole
,
K. A.
, and
Bollapragada
,
S.
,
2023
, “
Amplitude and Wavelength Effects for Wavy Channels
,”
ASME J. Turbomach.
,
145
(
3
), p.
031011
.
27.
Comini
,
G.
,
Nonino
,
C.
, and
Savino
,
S.
,
2003
, “
Effect of Aspect Ratio on Convection Enhancement in Wavy Channels
,”
Numer. Heat Transfer, Part A
,
44
(
1
), pp.
21
37
.
28.
Corbett
,
T. M.
,
Thole
,
K. A.
, and
Bollapragada
,
S.
,
2023
, “
Impacts of Pin Fin Shape and Spacing on Heat Transfer and Pressure Losses
,”
ASME J. Turbomach.
,
145
(
5
), p.
051014
.
29.
Reinhart
,
C.
,
2011
,
Industrial CT & Prevision
,
Volume Graphics GmbH
,
Heidelberg, Germany
.
30.
Uriati
,
F.
, and
Nicoletto
,
G.
,
2022
, “
A Comparison of Inconel 718 Obtained With Three L-PBF Production Systems in Terms of Process Parameters, As-Built Surface Quality, and Fatigue Performance
,”
Int. J. Fatigue
,
162
, p.
107004
.
31.
Colebrook
,
C. F.
,
1939
, “
Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws
,”
J. Inst. Civ. Eng.
,
11
(
4
), pp.
133
156
.
32.
Gnielinski
,
V.
,
1975
, “
New Equations for Heat and Mass Transfer in the Turbulent Flow in Pipes and Channels
,”
NASA STIRecon Tech. Rep. A
,
41
, pp.
8
16
.
33.
Dunn
,
P. F.
,
2014
,
Measurement and Data Analysis for Engineering and Science
,
CRC Press, Taylor & Francis
,
Boca Raton
.
34.
Gee
,
D. L.
, and
Webb
,
R. L.
,
1980
, “
Forced Convection Heat Transfer in Helically Rib-Roughened Tubes
,”
Int. J. Heat Mass Transfer
,
23
(
8
), pp.
1127
1136
.
You do not currently have access to this content.