Abstract

The dynamic response of a compression system is the complex dynamic behaviors reacted by the compressor subject to non-uniform inflow excitation. However, in a real operating condition, the compressor would work at a wide range of altitudes within the flight envelope, which forces us to consider how Re additionally affects the compressor performance loss and dynamic response characteristic due to inlet distortion. To explore this issue, a full-annulus unsteady 3D simulation has been used to calculate the performance of a transonic axial fan with a 180-deg distortion at different Re. The results show that Re has additional detrimental effects on the fan aerodynamic performance with non-uniform inflow. To further explore the mechanisms of Re effects on fan–distortion interaction, the spatial and temporal distribution of the rotor blade response is discussed. The temporal distribution of the fan–distortion interaction is not changed with Re by analyzing the dynamic response orbit of the fan rotor. However, the spatial distribution of Re effects is highly related to the blade profile loaded mode at different spanwise locations. The results indicate that the time constant of fan dynamic response decreases by 17% at the mid-loaded region in the middle of the blade and increases by 40% at the aft-loaded region near the blade tip. Further analysis reveals that due to the low Re and flow separation of the suction surface, the thickness variation of blade boundary layer is the main cause for varying the blade time constant.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Adamczyk
,
J.
,
1974
, “
Unsteady Fluid Dynamic Response of an Isolated Rotor With Distorted Inflow
,”
Proceedings of the 12th Aerospace Sciences Meeting
,
Washington, DC
,
Jan. 30–Feb. 1
, pp.
1
11
.
2.
Cousins
,
W. T.
,
1998
, “
A Theory for the Prediction of Compressor Blade Aerodynamic Response
,”
Proceedings of the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
,
Cleveland, OH
,
July 13–15
, pp.
1
9
.
3.
Cousins
,
W. T.
,
1979
, “
Techniques for the Analysis of Unsteady Pressure Measurements in an Axial Flow Compressor
,” Master Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
4.
Greitzer
,
E. M.
,
1978
, “
Surge and Rotating Stall in Axial-Flow Compressors—Part 1: Theoretical Compression System Model
,”
J. Eng. Power
,
98
(
2
), pp.
190
198
.
5.
Sexton
,
M. R.
, and
O’Brien
,
W. F.
, Jr
,
1981
, “
A Model for Dynamic Loss Response in Axial-Flow Compressors
,”
Proceedings of the ASME 1981 International Gas Turbine Conference and Products Show. Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
,
Houston, TX.
,
Mar. 9–12
, pp.
1
7
.
6.
Takata
,
H.
, and
Nagano
,
S.
,
1972
, “
Nonlinear Analysis of Rotating Stall
,”
J. Eng. Power
,
94
(
4
), pp.
279
293
;
7.
Zhang
,
W.
, and
Vahdati
,
M.
,
2019
, “
A Parametric Study of the Effects of Inlet Distortion on Fan Aerodynamic Stability
,”
ASME J. Turbomach.
,
141
(
1
), p.
011011
.
8.
Zhang
,
W.
,
Stapelfeldt
,
S.
, and
Vahdati
,
M.
,
2020
, “
Influence of the Inlet Distortion on Fan Stall Margin at Different Rotational Speeds
,”
Aerosp. Sci. Technol.
,
98
(
2020
), p.
105668
.
9.
Zhang
,
W.
,
Vahdati
,
M.
, and
Zhao
,
F.
,
2020
, “
Impact of Exit Duct Dynamic Response on Compressor Stability
,”
ASME J. Turbomach.
,
142
(
11
), p.
111006
.
10.
Ma
,
Y.
,
Cui
,
J.
,
Vadlamani
,
N. R.
, and
Tucker
,
P.
,
2018
, “
A Mixed-Fidelity Numerical Study for Fan–Distortion Interaction
,”
ASME J. Turbomach.
,
140
(
9
), p.
091003
.
11.
Fidalgo
,
V. J.
,
Hall
,
C. A.
, and
Colin
,
Y.
,
2012
, “
A Study of Fan-Distortion Interaction Within the NASA Rotor 67 Transonic Stage
,”
ASME J. Turbomach.
,
134
(
5
), p.
051011
.
12.
Giuliani
,
J. E.
, and
Chen
,
J. P.
,
2016
, “
Fan Response to Boundary-Layer Ingesting Inlet Distortion
,”
AIAA J.
,
54
(
10
), pp.
3232
3243
.
13.
Rademakers
,
R. P. M.
,
Bindl
,
S.
, and
Niehuis
,
R.
,
2016
, “
Effects of Flow Distortions as They Occur in S-Duct Inlets on the Performance and Stability of a Jet Engine
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
022605
.
14.
Naseri
,
A.
,
Sammak
,
S.
,
Boroomand
,
M.
,
Alihosseini
,
A.
, and
Tousi
,
A. M.
,
2018
, “
Experimental Investigation of Inlet Distortion Effect on Performance of a Micro Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
140
(
9
), p.
092604
.
15.
Oliva
,
A. A.
, and
Morris
,
S. C.
,
2022
, “
Experimental Investigation of Inlet Stagnation Pressure Distortion Effects on a Transonic Axial Compressor Rotor
,”
Proceedings of the ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. Volume 10A: Turbomachinery—Axial Flow Fan and Compressor Aerodynamics
,
Rotterdam, Netherlands
,
June 13–17
, pp.
1
14
.
16.
Ferrar
,
A. M.
,
2015
, “
Measurement and Uncertainty Analysis of Transonic Fan Response to Total Pressure Inlet Distortion
,” Ph. D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA.
17.
Dietmann
,
F.
,
Casey
,
M.
, and
Vogt
,
D. M.
,
2020
, “
Reynolds Number and Roughness Effects on Turbo compressor Performance: Numerical Calculations and Measurement Data Evaluation
,”
Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Volume 2C: Turbomachinery
,
Virtual, Online
,
Sept. 21–25
, pp.
1
11
.
18.
Cheng
,
H.
,
Lu
,
X.
,
Zhao
,
S.
,
Song
,
H.
, and
Zhu
,
J.
,
2022
, “
Effect of Tip Clearance Variation in the Transonic Axial Compressor of a Miniature Gas Turbine at Different Reynolds Numbers
,”
Aerosp. Sci. Technol.
,
128
(
2022
), p.
107793
.
19.
Wallner
,
L. E.
,
Lubick
,
R. J.
, and
Chelko
,
L. J.
,
1955
, “
Preliminary Results of the Determination of Inlet-Pressure Distortion Effects on Compressor Stall and Altitude Operating Limits of the J57-P-1 Turbojet Engine
,” NACA-RM-SE55E23.
20.
Lee
,
K.
,
Lee
,
B.
,
Kang
,
S.
,
Yang
,
S.
, and
Lee
,
D.
,
2010
, “
Inlet Distortion Test With Gas Turbine Engine in the Altitude Engine Test Facility
,”
Proceedings of the 27th AIAA Aerodynamic Measurement Technology and Ground Testing Conference
,
Chicago, IL
,
June 28–July 1
, pp.
1
8
.
21.
Cousins
,
W. T.
,
Dalton
,
K. K.
,
Andersen
,
T. T.
, and
Bobula
,
G. A.
,
1994
, “
Pressure and Temperature Distortion Testing of a Two-Stage Centrifugal Compressor
,”
ASME. J. Eng. Gas Turbines Power
,
116
(
3
), pp.
567
573
.
22.
Strazisar
,
A. J.
,
Wood
,
J. R.
,
Hathaway
,
M. D.
, and
Suder
,
K. L.
,
1990
, “
Laser Anemometer Measurements in a Transonic Axial-Flow Fan Rotor
,” Paper No. NASA-TP-2879.
23.
Van Zante
,
D. E.
,
Podboy
,
G. G.
,
Miller
,
C. J.
, and
Thorp
,
S. A.
,
2007
, “
Testing and Performance Verification of a High Bypass Ratio Turbofan Rotor in an Internal Flow Component Test Facility
,”
Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea, and Air. Volume 1: Turbo Expo 2007
,
Montreal, Canada
,
May 14–17
, pp.
51
65
.
24.
Spotts
,
N.
,
2015
, “
Unsteady Reynolds-Averaged Navier-Stokes Simulations of Inlet Flow Distortion in the Fan System of a Gas-Turbine Aero-Engine
,” Colorado State, University, Fort Collins, CO.
25.
Menter
,
F.
, and
Langtry
,
R. B.
,
2012
,
Low Reynolds Number Aerodynamics and Transition
,
BoD–Books on Demand
,
London, UK
, pp.
31
58
. DOI: 10.5772/2398
26.
Chirayath
,
E.
,
Xu
,
H.
,
Yang
,
X.
, and
Kunz
,
R.
,
2023
, “
Full Stage Axial Compressor Performance Modeling Incorporating the Effects of Blade Damage Due to Particle Ingestion
,”
ASME. J. Turbomach.
,
145
(
9
), p.
091001
.
27.
Gannon
,
A. J.
,
Hobson
,
G. V.
,
Hedges
,
C. R.
, and
Descovich
,
G. L.
,
2014
, “
Investigation and Prediction of Steam-Induced Stall-Margin Reduction in Two Transonic Rotor Fans
,”
ASME J. Fluids Eng.
,
136
(
11
), p.
111101
.
28.
Cheng
,
H. Z.
,
Li
,
Z. L.
,
Zhou
,
C. X.
,
Lu
,
X.
,
Zhao
,
S.
, and
Han
,
G.
,
2023
, “
Effect of Blade Surface Cooling on a Micro Transonic Axial Compressor Performance at Low Reynolds Number
,”
Appl. Therm. Eng.
,
226
, p.
120353
.
29.
Murawski
,
C. G.
,
Vafai
,
K.
,
Simon
,
T. W.
, and
Volino
,
R. J.
,
1997
, “
Experimental Study of the Unsteady Aerodynamics in a Linear Cascade With Low Reynolds Number Low Pressure Turbine Blades
,”
Proceedings of the ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
,
Orlando, FL
,
June 2–5
, pp.
1
8
.
30.
Zhang
,
P.
,
Lu
,
J.
,
Wang
,
Z.
,
Song
,
L.
, and
Feng
,
Z.
,
2015
, “
Adjoint-Based Optimization Method With Linearized SST Turbulence Model and a Frozen Gamma-Theta Transition Model Approach for Turbomachinery Design
,”
Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. Volume 2B: Turbomachinery
,
Montreal, Quebec, Canada
,
June 15–19
, pp.
1
15
.
31.
Callahan
,
G. M.
, and
Stenning
,
A. H.
,
1969
, “
Attenuation of Inlet Flow Distortion Upstream of Axial Flow Compressors
,”
Proceedings of the 5th Propulsion Joint Specialist
,
Colorado Springs, CO
,
June 9–13
, pp.
1
11
.
You do not currently have access to this content.