Abstract

Aerodynamic damping simulations involving detailed computational fluid dynamics (CFD) models are nowadays an integral part of turbomachinery design processes, thanks to advancements made in simulation tools and in computer hardware over the last decades. However, the test cases available in the open literature suitable for the validation and continued development of simulation tools is rather limited. On this background, a new test facility is introduced that allows acquiring relevant and high-quality aerodynamic damping test data on axial compressor rotor test objects in a controlled manner. The test facility is built as a closed loop and thus enables operation at variable pressure levels ranging from near-vacuum to overpressure and with different operating media. Overall damping test data are acquired at controlled synchronous and nonsynchronous vibration conditions. While vibrations of the blades at controlled nonsynchronous vibration conditions can be introduced in the test facility by means of a proprietary electromagnetic excitation system that is acting below the hub line, vibrations at controlled synchronous conditions can be introduced from a set of magnets integrated into the casing. Great care has been spent to create a clean test case without any intruding parts or openings in the test section. In addition, an axial compressor blisk is presented, which acts as test object to show the capabilities of the test facility as well as to allow for detailed investigations of aerodynamic damping. While the first part of the article discusses the setup and the instrumentation of the test facility to excite and measure blade vibration in a nonintrusive way, flow-field measurements and the validation accompanying steady-state Reynolds-averaged Navier-Stokes (RANS) simulations are shown in the second part. The third part of the article focuses on aerodynamic damping measurements for seven different modes at three different pressure levels in total. It can be shown that aerodynamic damping is by far the largest contributor to the overall damping.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Newman
,
F. A.
,
1988
, “Experimental Determination of Aerodynamic Damping in a Three-Stage Transonic Axial-Flow Compressor,”
National Aeronautics and Space Administration, Research Center
,
Cleveland, OH
, pp.
1
104
.
2.
Kielb
,
J. J.
, and
Abhari
,
R. S.
,
2003
, “
Experimental Study of Aerodynamic and Structural Damping in a Full-Scale Rotating Turbine
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
102
112
.
3.
Crawley
,
E. F.
,
1982
, “
Aerodynamic Damping Measurements in a Transonic Compressor
,”
ASME 1982 International Gas Turbine Conference and Exhibit
,
London. UK
,
Apr. 18–22
, p. V005T13A022.
4.
Freund
,
O.
,
Bartelt
,
M.
,
Mittelbach
,
M.
,
Montgomery
,
M.
,
Vogt
,
D. M.
, and
Seume
,
J. R.
,
2013
, “
Impact of the Flow on an Acoustic Excitation System for Aeroelastic Studies
,”
ASME J. Turbomach.
,
135
(
3
), p.
031033
.
5.
Meinzer
,
C. E.
, and
Seume
,
J. R.
,
2020
, “
Experimental and Numerical Quantification of the Aerodynamic Damping of a Turbine Blisk
,”
ASME J. Turbomach.
,
142
(
1
), p.
121011
.
6.
Rice
,
T.
,
Bell
,
D.
, and
Singh
,
G.
,
2009
, “
Identification of the Stability Margin Between Safe Operation and the Onset of Blade Flutter
,”
Trans. ASME J. Turbomach.
,
131
(
1
), p.
011009
.
7.
Bessone
,
A.
,
Carassale
,
L.
,
Guida
,
R.
,
Kubín
,
Z.
,
Alfio Lo Balbo
,
A.
,
Marrè Brunenghi
,
M.
, and
Pinelli
,
L.
,
2018
, “
Experimental and Numerical Assessment of a Last Stage ST Blade Damping at Low Load Operation
,” Acta Polytechnica CTU Proceedings 20, Association of Mechanical Engineers (A.S.I.),
Regional Branch in Pilsen and Czech Technical University in Prague
, pp.
16
28
.
8.
Doll
,
P.
,
Winkelmann
,
S.
,
Müller
,
F.
,
Vogt
,
D.
, and
Aschenbruck
,
J.
,
2022
, “
Aerodynamic Damping of Last Stage Rotating Blades of Low Pressure Steam Turbine Determined From Vibration Test Data
,” Proceedings of ASME Turbo Expo 2022, Rotterdam, Netherlands, p. V08AT21A013.
9.
Kristukat
,
S.
,
2008
, “
Numerical and Experimental Investigation of the Shock-Vane Interaction in a Transonic Compressor
,” Dissertation,
École Polytechnique Fédérale de Lausanne
,
France
.
10.
Layachi
,
M. Y.
,
2000
, “
Experimental Investigation of the Influence of the Axial Spacing, of the Tip Clearance and of the Clocking on the Characteristics of an Axial Compressor
,” Dissertation,
École Polytechnique Fédérale de Lausanne
,
France
.
11.
Müller
,
F. F.
,
2021
,
Strömungs- Und Schwingungsmesstechnik Für Turbomaschinen
,
Lecture Notes
,
University of Stuttgart
,
Stuttgart, Germany
.
12.
Häfele
,
M.
,
2020
, “
Experimental and Numerical Investigation on Aero-Thermodynamics in a Low-Pressure Industrial Steam Turbine With Part-Span Connectors
,” Dissertation,
Institute for Thermal Turbomachinery and Machinery Laboratory, University of Stuttgart
,
Shaker Verlag, Düren, Germany
.
13.
Hood Technology Corporation
,
2016
, “Analyze Blade Vibration: User Manual Version 8.x.”
14.
VACUUMSCHMELZE GmbH & Co. KG
,
2015
, “Vacodur 49, Data Sheet.”
15.
VACUUMSCHMELZE GmbH & Co. KG
,
2015
, “Trafoperm n4, Data Sheet.”
16.
Berruti
,
T.
,
Firrone
,
C. M.
, and
Gola
,
M. M.
,
2011
, “
A Test Rig for Noncontact Traveling Wave Excitation of a Bladed Disk With Underplatform Dampers
,”
Trans. ASME J. Eng. Gas Turb. Power
,
133
(
3
), p.
032502
.
17.
Kallenbach
,
E.
,
Eick
,
R.
,
Quendt
,
P.
,
Ströhla
,
T.
,
Feindt
,
K.
,
Kallenbach
,
M.
, and
Radler
,
O.
,
2012
,
Elektromagnete: Grundlagen, Berechnung, Entwurf Und Anwendung
, 4th ed.,
Vieweg+Teubner Verlag
,
Wiesbaden, Germany
.
18.
Brüggemann
,
C.
,
2014
, “
Gezielte Anregung Von Dampfturbinenlaufschaufeln Zur Bestimmung Der Dämpfung Im Ausschwingversuch
,” Master’s thesis,
Institute of Thermal Turbomachinery and Machinery Laboratory (ITSM), University of Stuttgart
,
Stuttgart, Germany
.
19.
Barranger
,
J.
,
1965
, “Hysteresis and Eddy-Current Losses of a Transformer Lamination Viewed as an Application of the Poynting Theorem,” NASA Technical Note D-3114, Cleveland, OH.
20.
Föll
,
H.
,
2019
,
Electronic Materials
,
Lecture Notes
,
University of Kiel
,
Kiel, Germany
.
21.
Wildheim
,
S. J.
,
1979
, “
Excitation of Rotationally Periodic Structures
,”
ASME J. Appl. Mech.
,
46
(
4
), pp.
878
882
.
22.
Wildheim
,
J.
,
1981
, “
Excitation of Rotating Circumferentially Periodic Structures
,”
J. Sound Vib.
,
75
(
3
), p.
397
416
.
23.
Hackenberg
,
H.-P.
, and
Hartung
,
A.
,
2016
, “
An Approach for Estimating the Effect of Transient Sweep Through a Resonance
,”
Trans. ASME J. Eng. Gas Turb. Power
,
138
(
8
), p.
082502
.
24.
Buchwald
,
P.
,
Farahmand
,
A.
, and
Vogt
,
D. M.
,
2019
, “
On the Influence of Blade Aspect Ratio on Aerodynamic Damping
,”
ASME J. Turbomach.
,
141
(
10
), p.
101007
.
25.
Buchwald
,
P.
,
Waldherr
,
C. U.
,
Schell
,
J.
,
Steger
,
H.
, and
Vogt
,
D. M.
,
2021
,
Experimental and Numerical Modal Analysis of an Axial Compressor Blisk
,
Vibration Engineering for a Sustainable Future Experiments, Materials and Signal Processing
,
S.
Oberst
,
B.
Halkon
,
J.
Ji
, and
T.
Brown
, eds.,
Springer Nature, Switzerland AG
,
Switzerland
, Vol.
2
, pp.
379
387
.
26.
Buchwald
,
P.
,
2023
, “Experimental and Numerical Investigation of Aerodynamic Damping,” Dissertation,
Institute of Thermal Turbomachinery and Machinery Laboratory (ITSM), University of Stuttgart
,
Shaker Verlag, Düren, Germany
.
27.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Int. Commun. Heat Mass Transfer
,
4
(
1
), pp.
625
632
.
28.
Müller
,
T. R.
,
Vogt
,
D. M.
,
Fischer
,
M.
, and
Phillipsen
,
B. A.
,
2018
, “
On the Far-Field Boundary Condition Treatment in the Framework of Aeromechanical Computations Using ANSYS CFX
,”
Proceedings of the 15th International Symposium on Unsteady Aerodynamics, Aeroacoustics & Aeroelasticity of Turbomachines
,
Oxford, UK
,
Sept. 24–27
.
29.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.
30.
Carta
,
F. O.
,
1967
, “
Coupled Blade-Disk-Shroud Flutter Instabilities in Turbojet Engine Rotors
,”
ASME J. Eng. Power
,
89
(
3
), pp.
419
426
.
31.
Moffatt
,
S.
, and
He
,
L.
,
2003
, “
Blade Forced Response Prediction for Industrial Gas Turbines Part I: Methodologies
,”
Proceedings of ASME Turbo Expo 2003 Collocated with the 2003 International Joint Power Generation Conference
,
Atlanta, GA
,
June 16–19
, pp.
407
414
.
32.
Meillard
,
L.
,
Schnell
,
R.
,
Meyer
,
R.
, and
Voigt
,
C.
,
2013
, “Time Resolved Pressure and Velocity Measurements at the DLR UHBR-Fan and Comparison With Simulation Data,”
62. Deutscher Luft- und Raumfahrtkongress
.
33.
Biela
,
C.
,
2012
, “
Experimentelle Untersuchung zum Einfluss des Vorleitrads auf die Rotorströmung eines anderthalbstufigen transsonischen Axialverdichters
,” Dissertation,
Technische Universität Darmstadt
,
Germany
.
34.
Heinz
,
C.
,
Schatz
,
M.
,
Casey
,
M. V.
, and
Stüer
,
H.
,
2010
, “
Experimental and Analytical Investigations of a Low Pressure Model Turbine During Forced Response Excitation
,” ASME Paper No. GT2010-22146, pp.
1
11
.
You do not currently have access to this content.