Abstract

Typical gas turbine combustor (GTC) and high-pressure turbine stage generally employs 10,000 to 100,000 small passages of cooling holes. Such an arrangement protects the solid walls through impingement and effusion cooling. The former provides solid wall internal cooling, and the latter helps to reduce the metal temperature by developing a thin film around it. High-fidelity simulations are primarily utilized in the industry such that accurate prediction from numerical tools can aid advancement in the performance of such machines. In this paper, a numerical study using ansys fluent has been conducted with large eddy simulation (LES), conjugate heat transfer (CHT), and radiation to explore the relative benefits of implicit and explicit fluid–solid thermal couplings. The simulations of LES with CHT are performed for well-documented experiments of heated nozzle exhaust passing over a film-cooled plate (Wernet et al., 2020, “PIV and Rotational Raman-Based Temperature Measurements for CFD Validation of a Perforated Plate Cooling Flow: Part I,” AIAA 2020-1230, Session, AIAA Scitech 2020 Forum, Orlando, FL, Jan. 6–10, 2020). The accuracy of the modeling approach is assessed by comparing CHT predictions of fluid velocity and solid-plate temperatures with experiments. Acceleration techniques for LES–CHT simulations are explored in this paper with an emphasis on thermal coupling, radiation, etc. The effects of mesh sensitivity and flow solution approach are presented in detail. LES–CHT results generally match the experiments at various blowing ratios both qualitatively and quantitatively. The comparisons in the paper allow the selection of best practices for CHT modeling in GTC. A generic combustor model with effusion cooling hole arrays is used in the paper to establish the workflow for modeling LES with CHT in the industrial-type combustor. Various acceleration techniques are utilized to show an overall improvement in solution performance with the same level of accuracy.

References

1.
Ji
,
Y.
,
Ge
,
B.
, and
Zang
,
S.
,
2022
, “
Conjugate Heat Transfer Characteristics of Effusion Cooling Under Realistic Swirl Flow in a Three-Sector Gas Turbine Model Combustor
,”
Appl. Therm. Eng.
,
213
, p.
118735
.
2.
Kim
,
K. M.
,
Yun
,
N.
,
Jeon
,
Y. H.
,
Lee
,
D. H.
,
Cho
,
H. H.
, and
Kang
,
S.-H.
,
2010
, “
Conjugated Heat Transfer and Temperature Distributions in a Gas Turbine Combustion Liner Under Base-Load Operation
,”
J. Mech. Sci. Technol.
,
24
(
9
), pp.
1939
1946
.
3.
Kim
,
K. M.
,
Park
,
J. S.
,
Lee
,
D. H.
,
Lee
,
T. W.
, and
Cho
,
H. H.
,
2011
, “
Analysis of Conjugated Heat Transfer, Stress and Failure in a Gas Turbine Blade With Circular Cooling Passages
,”
Eng. Fail. Anal.
,
18
(
4
), pp.
1212
1222
.
4.
Duchaine
,
F.
,
Mendez
,
S.
,
Nicoud
,
F.
,
Corpron
,
A.
,
Moureau
,
V.
, and
Poinsot
,
T.
,
2009
, “
Conjugate Heat Transfer With Large Eddy Simulation for Gas Turbine Components
,”
C. R. Mec.
,
337
(
6–7
), pp.
550
561
.
5.
Nakod
,
P.
,
Patwardhan
,
S.
,
Verma
,
I.
, and
Orsino
,
S.
,
2017
, “
Prediction of Soot Formation Trends in Turbulent Kerosene-Air Diffusion Jet Flames With Elevated Operating Pressure
,”
Proceedings of the ASME 2017 Gas Turbine India Conference
,
Dec. 7–8, 2017
,
ASME
, p.
V001T04A012
.
6.
Ghose
,
P.
,
Patra
,
J.
,
Datta
,
A.
, and
Mukhopadhyay
,
A.
,
2016
, “
Prediction of Soot and Thermal Radiation in a Model Gas Turbine Combustor Burning Kerosene Fuel Spray at Different Swirl Levels
,”
Combust. Theory Model.
,
20
(
3
), pp.
457
485
.
7.
Lefebvre
,
A. H.
,
1984
, “
Flame Radiation in Gas Turbine Combustion Chambers
,”
Int. J. Heat Mass Transfer
,
27
(
9
), pp.
1493
1510
.
8.
Wu
,
A.
,
Keum
,
S.
, and
Sick
,
V.
,
2019
, “
Large Eddy Simulations With Conjugate Heat Transfer (CHT) Modeling of Internal Combustion Engines (ICEs)
,”
Oil Gas Sci. Technol.
,
74
(Dossier LES4ICE’18 : LES for Internal Combustion Engine Flows Conference), p.
51
.
9.
Berger
,
S.
,
Richard
,
S.
,
Duchaine
,
F.
,
Staffelbach
,
G.
, and
Gicquel
,
L. Y. M.
,
2016
, “
On the Sensitivity of a Helicopter Combustor Wall Temperature to Convective and Radiative Thermal Loads
,”
Appl. Therm. Eng.
,
103
, pp.
1450
1459
.
10.
Gamil
,
A. A.
,
Nikolaidis
,
T.
,
Lelaj
,
I.
, and
Laskaridis
,
P.
,
2020
, “
Assessment of Numerical Radiation Models on the Heat Transfer of an Aero-Engine Combustion Chamber
,”
Case Stud. Therm. Eng.
,
22
, p.
100772
.
11.
Ghani
,
A.
,
Miguel-Brebion
,
M.
,
Selle
,
L.
,
Duchaine
,
F.
, and
Poinsot
,
T.
,
2016
, “
Effect of Wall Heat Transfer on Screech in a Turbulent Premixed Combustor
,”
Center for Turbulence Research Proceedings of the Summer Program
,
Stanford, CA
,
June 26
.
12.
Ansys, Inc.
,
2022
,
Product Documentation Release 22.2
,
Ansys, Inc.
,
Canonsburg, PA
.
13.
Shrivastava
,
S.
,
Andrade
,
P.
,
Carpenter
,
V.
,
Masal
,
R.
,
Nakod
,
P.
, and
Orsino
,
S.
,
2019
, “
Multi-Physics Simulation Based Approach for Life Prediction of a Gas Turbine Combustor Liner
,”
Turbo Expo: Power for Land, Sea, and Air
,
Phoenix, AZ
,
June 17–21
.
14.
Wernet
,
M. P.
,
Georgiadis
,
N. J.
,
Locke
,
R.
,
Thurman
,
D.
, and
Poinsatte
,
P.
,
2020
, “
PIV and Rotational Raman-Based Temperature Measurements for CFD Validation of a Perforated Plate Cooling Flow: Part I
,”
AIAA 2020-1230, Session, AIAA Scitech 2020 Forum
,
Orlando, FL
,
Jan. 6–10
.
15.
Georgiadis
,
N. J.
,
Wernet
,
M. P.
,
Crowe
,
D. S.
,
Woeber
,
C.
,
Karman-Shoemake
,
K.
, and
Winkler
,
C. M.
,
2022
, “
Summary of the 5th Propulsion Aerodynamics Workshop Nozzle Test Case: Heated Nozzle Exhaust Passing Over A Film-Cooled Plate
,”
AIAA Scitech 2022 Forum
,
San Diego, CA
,
Jan. 3–7
.
16.
Kim
,
C. S.
,
1975
,
Thermophysical Properties of Stainless Steels
,
Argonne National Lab.
,
Argonne, IL
.
17.
Pope
,
S. B.
,
2004
, “
Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows
,”
New J. Phys.
,
6
(
1
), p.
35
.
18.
Wang
,
H.
, and
Dames
,
E.
,
2010
, “A High-Temperature Chemical Kinetic Model of n-Alkane (up to n-Dodecane), Cyclohexane, and Methyl-, Ethyl-, n-Propyl and n-Butyl-Cyclohexane Oxidation at High Temperatures”, JetSurF version 2.0. http://web.stanford.edu/group/haiwanglab/JetSurF/JetSurF2.0/index.html
19.
Wernet
,
M. P.
,
Georgiadis
,
N. J.
,
Locke
,
R.
,
Thurman
,
D.
, and
Poinsatte
,
P.
,
2020
, “
PIV and Rotational Raman-Based Temperature Measurements for CFD Validation of a Perforated Plate Cooling Flow: Part I
,”
AIAA Scitech 2020 Forum, AIAA
,
Orlando, FL
,
Jan. 6–10
.
20.
Zore
,
K.
,
Aliaga
,
C.
,
Shah
,
S.
,
Stokes
,
J.
,
Zori
,
L.
, and
Makarov
,
B.
,
2023
, “
Conjugate Heat Transfer Simulations of a Nozzle Flow Over a Film-Cooled Plate
,”
J. Thermophys. Heat Transfer
,
37
(
2
), pp.
404
423
.
You do not currently have access to this content.