Abstract

The capabilities and the precision of additive manufacturing processes have been tremendously increased in the last years, and this trend is not expected to be close to an end. Researchers, in the gas turbine industry, are focusing on the technology implementation on cooling systems. The aim of the present work is to investigate the performances of eight different geometries in order to exploit the cooling potential of some challenging latticework schemes with respect to traditional ones such as smooth channel, dimples, and pin fins. Test coupons consisting of those cooling structures embedded inside a rectangular cooling channel with dimensions of 56 mm width, 5 mm height, and 68 mm length were fabricated by means of direct metal laser melting technique. Since an aim of the present work is to evaluate the shape deformation associated with this additive process, the results of the CT scan imaging technique are presented. The performances are characterized both in terms of averaged heat transfer and friction factor values inside the test coupons by means of steady-state technique with a constant wall temperature boundary condition. The investigated flow Reynolds numbers range from 18, 000 to 40, 000. These values allow the authors to provide a deeper understanding of the latticework structures performances at Reynolds numbers beyond the range typically investigated in the literature. An efficiency index is employed to compare the performances of each geometry. Although the obtained results reveal that none of the tested geometries outperforms the other ones, the latticework arrangements show a heat transfer enhancement with respect to a porosity decrease. In addition, the good capability in terms of heat transfer of the lattice structures measured in the present work suggests the use of such technologies for twofold optimization process based on mechanical resistance and heat transfer characteristics.

References

1.
Zhang
,
J.
,
Zhang
,
S.
,
Chunhua
,
W.
, and
Xiaoming
,
T.
,
2020
, “
Recent Advances in Film Cooling Enhancement: A Review
,”
Chin. J. Aeronaut.
,
33
(
4
), pp.
1119
1136
.
2.
Metzger
,
D. E.
,
Berry
,
R. A.
, and
Bronson
,
J. P.
, “
Developing Heat Transfer in Rectangular Ducts With Staggered Arrays of Short Pin Fins
.”
3.
Horbach
,
T.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2011
, “
Trailing Edge Film Cooling of Gas Turbine Airfoils–External Cooling Performance of Various Internal Pin Fin Configurations
,”
ASME J. Turbomach.
,
133
(
4
), p.
041006
.
4.
Sparrow
,
E. M.
,
Ramsey
,
J. W.
, and
Altemani
,
C. A. C.
,
1980
, “
Experiments on In-Line Pin Fin Arrays and Performance Comparisons With Staggered Arrays
,”
ASME J. Heat Mass Transfer
,
102
(
1
), pp.
44
50
.
5.
VanFossen
,
G. J.
,
1982
, “
Heat-Transfer Coefficients for Staggered Arrays of Short Pin Fins
,”
ASME J. Eng. Gas Turbines Power
,
104
(
2
), pp.
268
274
.
6.
Chen
,
Z.
,
Li
,
Q.
,
Meier
,
D.
, and
Warnecke
,
H.-J.
,
1997
, “
Convective Heat Transfer and Pressure Loss in Rectangular Ducts With Drop-Shaped Pin Fins
,”
Heat Mass Transfer
,
33
(
3
), pp.
219
224
.
7.
Choi
,
I. K.
,
Kim
,
T.
,
Song
,
S. J.
, and
Lu
,
T. J.
,
2007
, “
Endwall Heat Transfer and Fluid Flow Around an Inclined Short Cylinder
,”
Int. J. Heat Mass Transfer
,
50
(
5–6
), pp.
919
930
.
8.
Narato
,
P.
,
Wae-Hayee
,
M.
,
Abdullah
,
M. Z.
, and
Nuntadusit
,
C.
,
2017
, “
Effect of Inclined Pins on Flow and Heat Transfer Characteristics for Single Row in Rectangular Channel
,”
J. Res. Appl. Mech. Eng.
,
5
(
2
), pp.
106
118
.
9.
Han
,
J. C.
,
Ou
,
S.
,
Park
,
J. S.
, and
Lei
,
C. K.
,
1989
, “
Augmented Heat Transfer in Rectangular Channels of Narrow Aspect Ratios With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
32
(
9
), pp.
1619
1630
.
10.
Gorelov
,
V.
,
Goikhenberg
,
M.
, and
Malkov
,
V.
,
1990
, “
The Investigation of Heat Transfer in Cooled Blades of Gas Turbines
,”
26th Joint Propulsion Conference
,
Orlando, FL
,
July 16–18
, p.
2144
.
11.
Hagari
,
T.
, and
Ishida
,
K.
,
2013
, “
Numerical Investigation on Flow and Heat Transfer in a Lattice (Matrix) Cooling Channel
,” Turbo Expo: Power for Land, Sea, and Air,
American Society of Mechanical Engineers
, p.
V03AT12A040
.
12.
Taek Oh
,
I.
,
Min Kim
,
K.
,
Hyun Lee
,
D.
,
Su Park
,
J.
, and
Hee Cho
,
H.
,
2012
, “
Local Heat/Mass Transfer and Friction Loss Measurement in a Rotating Matrix Cooling Channel
,”
ASME. J. Heat. Transfer-Trans. ASME.
,
134
(
1
), p.
011901
.
13.
Luan
,
Y.
,
Yang
,
L.
,
Wan
,
B.
, and
Sun
,
T.
,
2017
, “
Large Eddy Simulation of Flow and Heat Transfer Mechanism in Matrix Cooling Channel
,” Turbo Expo: Power for Land, Sea, and Air,
American Society of Mechanical Engineers
, p.
V05AT11A003
.
14.
Tsuru
,
T.
,
Ishida
,
K.
,
Fujita
,
J.
, and
Takeishi
,
K.
,
2019
, “
Three-Dimensional Visualization of Flow Characteristics Using a Magnetic Resonance Imaging in a Lattice Cooling Channel
,”
ASME J. Turbomach.
,
141
(
6
), p.
061003
.
15.
Tariq
,
A.
, and
Prajapati
,
A. N.
,
2021
, “
Heat Transfer Characteristics Within the Matrix Cooling Channels
,”
ASME J. Turbomach.
,
143
(
5
), p.
051007
.
16.
Saha
,
K.
,
Guo
,
S.
,
Acharya
,
S.
, and
Nakamata
,
C.
,
2008
, “
Heat Transfer and Pressure Measurements in a Lattice-Cooled Trailing Edge of a Turbine Airfoil
,” Turbo Expo: Power for Land, Sea, and Air, pp.
1117
1125
.
17.
Saha
,
K.
,
Acharya
,
S.
, and
Nakamata
,
C.
,
2008
, “
Heat Transfer and Pressure Drop in a Converging Lattice Structure for Airfoil Trailing Edge Cooling
,”
ASME International Mechanical Engineering Congress and Exposition
,
Boston, MA
,
Oct. 31–Nov. 6
, pp.
1175
1184
.
18.
Saha
,
K.
,
Acharya
,
S.
, and
Nakamata
,
C.
,
2013
, “
Heat Transfer Enhancement and Thermal Performance of Lattice Structures for Internal Cooling of Airfoil Trailing Edges
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
1
), p.
011001
.
19.
Leary
,
M.
,
Mazur
,
M.
,
Elambasseril
,
J.
,
McMillan
,
M.
,
Chirent
,
T.
,
Sun
,
Y.
,
Qian
,
M.
,
Easton
,
M.
, and
Brandt
,
M.
,
2016
, “
Selective Laser Melting (SLM) of AlSi12Mg Lattice Structures
,”
Mater. Des.
,
98
, pp.
344
357
.
20.
Jafari
,
D.
, and
Wits
,
W. W.
,
2018
, “
The Utilization of Selective Laser Melting Technology on Heat Transfer Devices for Thermal Energy Conversion Applications: A Review
,”
Renew. Sustain. Energy Rev.
,
91
, pp.
420
442
.
21.
Liang
,
D.
,
Bai
,
W.
,
Chen
,
W.
, and
Chyu
,
M. K.
,
2020
, “
Investigating the Effect of Element Shape of the Face-Centered Cubic Lattice Structure on the Flow and Endwall Heat Transfer Characteristics in a Rectangular Channel
,”
Int. J. Heat Mass Transfer
,
153
, p.
119579
.
22.
Kim
,
T.
,
Hodson
,
H. P.
, and
Lu
,
T. J.
,
2004
, “
Fluid-Flow and Endwall Heat-Transfer Characteristics of an Ultralight Lattice-Frame Material
,”
Int. J. Heat Mass Transfer
,
47
(
6–7
), pp.
1129
1140
.
23.
Kim
,
T.
,
Hodson
,
H. P.
, and
Lu
,
T. J.
,
2005
, “
Contribution of Vortex Structures and Flow Separation to Local and Overall Pressure and Heat Transfer Characteristics in an Ultralightweight Lattice Material
,”
Int. J. Heat Mass Transfer
,
48
(
19–20
), pp.
4243
4264
.
24.
Shen
,
B.
,
Yan
,
H.
,
Xue
,
H.
, and
Xie
,
G.
,
2018
, “
The Effects of Geometrical Topology on Fluid Flow and Thermal Performance in Kagome Cored Sandwich Panels
,”
Appl. Therm. Eng.
,
142
, pp.
79
88
.
25.
Kemerli
,
U.
, and
Kahveci
,
K.
,
2020
, “
Conjugate Forced Convective Heat Transfer in a Sandwich Panel With a Kagome Truss Core: The Effects of Strut Length and Diameter
,”
Appl. Therm. Eng.
,
167
, p.
114794
.
26.
Parbat
,
S.
,
Min
,
Z.
,
Yang
,
L.
, and
Chyu
,
M.
,
2020
, “
Experimental and Numerical Analysis of Additively Manufactured Inconel 718 Coupons With Lattice Structure
,”
ASME J. Turbomach.
,
142
(
6
), p.
061004
.
27.
Burgess
,
N. K.
,
Oliveira
,
M. M.
, and
Ligrani
,
P. M.
,
2003
, “
Nusselt Number Behavior on Deep Dimpled Surfaces Within a Channel
,”
J. Heat Mass Transfer
,
125
(
1
), pp.
11
18
.
28.
Acharya
,
S.
,
Zhou
,
F.
,
Lagrone
,
J.
,
Mahmood
,
G.
, and
Bunker
,
R. S.
,
2005
, “
Latticework (Vortex) Cooling Effectiveness: Rotating Channel Experiments
,”
ASME J. Turbomach.
,
127
(
3
), pp.
471
478
.
29.
Snyder
,
J. C.
,
Stimpson
,
C. K.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Build Direction Effects on Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051006
.
30.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1985
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Int. Commun. Heat Mass Transfer
,
12
(
1
), pp.
3
22
.
31.
Colebrook
,
C. F.
, and
White
,
C. M.
,
1937
, “
Experiments With Fluid Friction in Roughened Pipes
,”
Proc. R. Soc. London. Ser. A-Math. Phys. Sci.
,
161
(
906
), pp.
367
381
.
32.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
1996
,
Fundamentals of Heat and Mass Transfer
, Vol.
6
,
Wiley
,
New York
.
33.
The American Society of Mechanical Engineers
,
2019
, Test Uncertainty. ASME PTC 19.1 – 2018, ASME, New York, NY.
34.
Kline
,
S.
, and
McClintock
,
F.
,
1953
, “
Describing Uncertainty in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
35.
The American Society of Mechanical Engineers
,
2019
, Dimensioning and Tolerancing. ASME Y 14.5 – 2018, ASME, New York, NY.
36.
Gee
,
D. L.
, and
Webb
,
R. L.
,
1980
, “
Forced Convection Heat Transfer in Helically Rib-Roughened Tubes
,”
Int. J. Heat Mass Transfer
,
23
(
8
), pp.
1127
1136
.
37.
Ligrani
,
P.
,
2013
, “
Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines
,”
Int. J. Rotat. Mach.
,
2013
, pp.
1
32
.
You do not currently have access to this content.