Abstract

High-fidelity simulation of transitional and turbulent flows over multi-scale surface roughness presents several challenges. For instance, the complex and irregular geometrical nature of surface roughness makes it impractical to employ conforming structured grids, commonly adopted in large-scale numerical simulations due to their high computational efficiency. One possible solution to overcome this problem is offered by immersed boundary methods, which allow wall boundary conditions to be enforced on grids that do not conform to the geometry of the solid boundary. To this end, a three-dimensional, second-order accurate boundary data immersion method (BDIM) is adopted. A novel mapping algorithm that can be applied to general three-dimensional surfaces is presented, together with a newly developed data-capturing methodology to extract and analyze on-surface flow quantities of interest. A rigorous procedure to compute gradient quantities such as the wall shear stress and the heat flux on complex non-conforming geometries is also introduced. The new framework is validated by performing a direct numerical simulation (DNS) of fully developed turbulent channel flow over sinusoidal egg-carton roughness in a minimal-span domain. For this canonical case, the averaged streamwise velocity profiles are compared against results from the literature obtained with a body-fitted grid. General guidelines on the BDIM resolution requirements for multi-scale roughness simulation are given. Momentum and energy balance methods are used to validate the calculation of the overall skin friction and heat transfer at the wall. The BDIM is then employed to investigate the effect of irregular homogeneous surface roughness on the performance of an LS-89 high-pressure turbine blade at engine-relevant conditions using DNS. This is the first application of the BDIM to realize multi-scale roughness for transitional flow in transonic conditions in the context of high-pressure turbines. The methodology adopted to generate the desired roughness distribution and to apply it to the reference blade geometry is introduced. The results are compared to the case of an equivalent smooth blade.

References

1.
Mittal
,
R.
, and
Iaccarino
,
G.
,
2005
, “
Immersed Boundary Methods
,”
Annu. Rev. Fluid Mech.
,
37
, pp.
239
261
.
2.
Bons
,
J. P.
,
Taylor
,
R. P.
,
McClain
,
S. T.
, and
Rivir
,
R. B.
,
2001
, “
The Many Faces of Turbine Surface Roughness
,”
ASME J. Turbomach.
,
123
(
4
), pp.
739
748
.
3.
Cardillo
,
J.
,
Chen
,
Y.
,
Araya
,
G.
,
Newman
,
J.
,
Jansen
,
K.
, and
Castillo
,
L.
,
2013
, “
DNS of a Turbulent Boundary Layer With Surface Roughness
,”
J. Fluid Mech.
,
729
, pp.
603
637
.
4.
Busse
,
A.
,
Lützner
,
M.
, and
Sandham
,
N. D.
,
2015
, “
Direct Numerical Simulation of Turbulent Flow Over a Rough Surface Based on a Surface Scan
,”
Comput. Fluids
,
116
, pp.
129
147
.
5.
Nardini
,
M.
,
Jelly
,
T. O.
,
Kozul
,
M.
,
Sandberg
,
R. D.
,
Vitt
,
P.
, and
Sluyter
,
G.
,
2023
, “
Direct Numerical Simulation of Transitional and Turbulent Flows Over Multi-Scale Surface Roughness—Part II: The Effect of Roughness on the Performance of a High-Pressure Turbine Blade
,”
ASME J. Turbomach
.
6.
Peskin
,
C. S.
,
1972
, “
Flow Patterns Around Heart Valves: A Numerical Method
,”
J. Comput. Phys.
,
10
(
2
), pp.
252
271
.
7.
Fadlun
,
E. A.
,
Verzicco
,
R.
,
Orlandi
,
P.
, and
Mohd-Yusof
,
J.
,
2000
, “
Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations
,”
J. Comput. Phys.
,
161
(
1
), pp.
35
60
.
8.
Weymouth
,
G.
, and
Yue
,
D. K.
,
2011
, “
Boundary Data Immersion Method for Cartesian-Grid Simulations of Fluid-Body Interaction Problems
,”
J. Comput. Phys.
,
230
(
16
), pp.
6233
6247
.
9.
Guy
,
R. D.
, and
Hartenstine
,
D. A.
,
2010
, “
On the Accuracy of Direct Forcing Immersed Boundary Methods With Projection Methods
,”
J. Comput. Phys.
,
229
(
7
), pp.
2479
2496
.
10.
Ye
,
T.
,
Mittal
,
R.
,
Udaykumar
,
H.
, and
Shyy
,
W.
,
1999
, “
An Accurate Cartesian Grid Method for Viscous Incompressible Flows With Complex Immersed Boundaries
,”
J. Comput. Phys.
,
156
(
2
), pp.
209
240
.
11.
Maertens
,
A. P.
, and
Weymouth
,
G. D.
,
2015
, “
Accurate Cartesian-Grid Simulations of Near-Body Flows at Intermediate Reynolds Numbers
,”
Comput. Methods Appl. Mech. Eng.
,
283
, pp.
106
129
.
12.
Schlanderer
,
S. C.
,
Weymouth
,
G. D.
, and
Sandberg
,
R. D.
,
2017
, “
The Boundary Data Immersion Method for Compressible Flows With Application to Aeroacoustics
,”
J. Comput. Phys.
,
333
, pp.
440
461
.
13.
Pourquie
,
M.
,
2009
, “Accuracy Close to the Wall of Immersed Boundary Methods,”
IFMBE Proceedings
, Vol.
22
,
J.
Vander Sloten
,
P.
Verdonck
,
M.
Nyssen
, and
J.
Haueisen
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
1939
1942
.
14.
Ananth
,
S. M.
,
Vaid
,
A.
,
Vadlamani
,
N. R.
,
Nardini
,
M.
,
Kozul
,
M.
, and
Sandberg
,
R. D.
,
2023
, “
Riblet Performance Beneath Transitional and Turbulent Boundary Layers at Low Reynolds Numbers
,”
AIAA J.
,
61
(
5
), pp.
1986
2001
.
15.
Sandberg
,
R.
,
Michelassi
,
V.
,
Pichler
,
R.
,
Chen
,
L.
, and
Johnstone
,
R.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part I: Methodology
,”
ASME J. Turbomach.
,
137
(
5
), p.
051011
.
16.
Macdonald
,
M.
,
Chan
,
L.
,
Chung
,
D.
,
Hutchins
,
N.
, and
Ooi
,
A.
,
2016
, “
Turbulent Flow Over Transitionally Rough Surfaces With Varying Roughness Densities
,”
J. Fluid Mech.
,
804
, pp.
130
161
.
17.
Arts
,
T.
,
Lambert der ouvroit
,
M.
, and
Rutherford
,
A. W.
,
1990
, “
Aero-Thermal Investigation of a Highly Loaded Transonic Linear Turbine Guide Vane Cascade
,”
Tech. Rep., September, Brussels, Belgium.
18.
Wheeler
,
A. P.
,
Sandberg
,
R. D.
,
Sandham
,
N. D.
,
Pichler
,
R.
,
Michelassi
,
V.
, and
Laskowski
,
G.
,
2016
, “
Direct Numerical Simulations of a High-Pressure Turbine Vane
,”
ASME J. Turbomach.
,
138
(
7
), p.
071003
.
19.
Pichler
,
R.
,
Kopriva
,
J.
,
Laskowski
,
G.
,
Michelassi
,
V.
, and
Sandberg
,
R.
,
2016
, “
Highly Resolved LES of a Linear HPT Vane Cascade Using Structured and Unstructured Codes
,”
Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. Volume 2C: Turbomachinery
,
Seoul, South Korea
,
June 13–17
, p. V02CT39A041.
20.
Pichler
,
R.
,
Sandberg
,
R. D.
,
Laskowski
,
G.
, and
Michelassi
,
V.
,
2017
, “
High-Fidelity Simulations of a Linear HPT Vane Cascade Subject to Varying Inlet Turbulence
,”
Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, Vol. V02AT40A00.
21.
Touber
,
E.
, and
Sandham
,
N. D.
,
2009
, “
Large-Eddy Simulation of Low-Frequency Unsteadiness in a Turbulent Shock-Induced Separation Bubble
,”
Theor. Comput. Fluid Dyn.
,
23
(
2
), pp.
79
107
.
22.
Sandberg
,
R. D.
, and
Sandham
,
N. D.
,
2006
, “
Nonreflecting Zonal Characteristic Boundary Condition for Direct Numerical Simulation of Aerodynamic Sound
,”
Notes
,
44
(
12
), pp.
2
5
.
23.
Deuse
,
M.
, and
Sandberg
,
R. D.
,
2020
, “
Implementation of a Stable High-Order Overset Grid Method for High-Fidelity Simulations
,”
Comput. Fluids
,
211
, p.
104449
.
24.
Jelly
,
T. O.
,
Nardini
,
M.
,
Rosenzweig
,
M.
,
Leggett
,
J.
,
Marusic
,
I.
, and
Sandberg
,
R. D.
,
2023
, “
High-Fidelity Computational Study of Roughness Effects on High Pressure Turbine Performance and Heat Transfer
,”
Int. J. Heat Fluid Flow
,
101
, p.
109134
.
25.
Jelly
,
T. O.
, and
Busse
,
A.
,
2018
, “
Reynolds and Dispersive Shear Stress Contributions Above Highly Skewed Roughness
,”
J. Fluid Mech.
,
852
, pp.
710
724
.
26.
Jelly
,
T. O.
, and
Busse
,
A.
,
2019
, “
Multi-Scale Anisotropic Rough Surface Algorithm: Technical Documentation and User Guide
,”
Tech. Rep., University of Glasgow.
27.
Bons
,
J. P.
,
2002
, “
St and Cf Augmentation for Real Turbine Roughness With Elevated Freestream Turbulence
,”
ASME J. Turbomach.
,
124
(
4
), pp.
632
644
.
28.
Zhao
,
Y.
, and
Sandberg
,
R. D.
,
2020
, “
Bypass Transition in Boundary Layers Subject to Strong Pressure Gradient and Curvature Effects
,”
J. Fluid Mech.
,
888
, pp.
A4
.
You do not currently have access to this content.