Abstract

In contrast to the highly optimized rotating components, the inter compressor duct (ICD) is offering a high potential for further improvements. Due to a more aggressive design, the length of the whole engine can be reduced. Shorter and thus lighter engines are leading to further fuel savings for the next engine generation. The design of current ICDs is very conservative because of high uncertainties in design space. An extensive test campaign on two highly aggressive ICDs has been conducted at an annular cascade at German Aerospace Center (DLR) Cologne to explore these limitations. The test section consists of low-pressure compressor (LPC)-OGVs, struts, and high-pressure compressor (HPC)-inlet guide vanes (IGVs). To simulate the influence of the last rotor of the LPC and to vary the incidence of the OGV, a moveable swirler is placed in front of the OGV. This simplification results in differences compared to a real rotor outlet flow. Due to geometric constraints, the ability to move the swirler can only be achieved by adding partial gaps in the rear part of the swirler at hub and shroud. These gaps have a huge impact on the secondary flow structure of the swirler outflow and therefore on the inflow of the ICD. In this article, the secondary flow system of an aggressive ICD is analyzed in detail by the means of experimentally validated computational fluid dynamics (CFD) simulations. Special attention is given to the influence of the nonrotating swirler on the secondary flow system. Furthermore, a recommendation for future experimental setups with respect to the described effects is concluded.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Bergstedt
,
R.
,
Walker
,
D.
,
Peacock
,
G.
, and
Wallin
,
F.
,
2015
, “
Aerodesign and Alidation of Turning Struts for an Intermediate Compressor Duct
,”
ISABE
,
Phoenix, AZ
,
Oct. 25–30
.
2.
Wallin
,
F.
,
Langhoff
,
P.
, and
Nicke
,
E.
,
2019
, “
Aerodynamic Test Campaign of Next Generation Aggressive Intermediate Compressor Ducts
,”
ISABE
,
Canberra, Australia
,
Sept. 22–27
, p.
10
.
3.
Naylor
,
E. M. J.
,
Ortiz Dueñas
,
C.
,
Miller
,
R. J.
, and
Hodson
,
H. P.
,
2008
, “
Optimisation of Non-Axisymmetric Endwalls in Compressor S-Shaped Ducts
,”
Volume 6: Turbomachinery, Parts A, B, and C
,
Berlin, Germany
,
June 9–13
,
ASME
, pp.
305
316
.
4.
Dygutsch
,
T.
,
Kasper
,
A.
, and
Voss
,
C.
,
2022
, “
On the Effect of Inter Compressor Duct Length on Compressor Performance
,”
Aeronautical J.
,
126
(
1302
), pp.
1333
1350
.
5.
Karakasis
,
M. K.
,
Naylor
,
E. M. J.
,
Miller
,
R. J.
, and
Hodson
,
H. P.
,
2010
, “
The Effect of an Upstream Compressor on a Non-Axisymmetric S-Duct
,”
Volume 7: Turbomachinery, Parts A, B, and C
,
Glasgow, UK
,
June 14–18
,
ASME
, pp.
477
486
.
6.
Sonoda
,
T.
,
Arima
,
T.
, and
Oana
,
M.
,
1997
, “
The Influence of Downstream Passage on the Flow Within an Annular S-Shaped Duct
,”
ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition
,
Orlando, FL
,
June 2–5
,
ASME
,
New York
.
7.
Wallin
,
F.
,
Olsson
,
J.
,
Johansson
,
P. P. J.
,
Krüger
,
E.
, and
Olausson
,
M.
,
2013
, “
High Speed Testing and Numerical Validation of an Aggressive Intermediate Compressor Duct
,”
Turbo Expo: Power for Land, Sea, and Air
,
San Antonio, TX
,
June 3–7
,
American Society of Mechanical Engineers
.
8.
Bailey
,
D. W.
,
Britchford
,
K. M.
,
Carrote
,
J. F.
, and
Stevens
,
S. J.
,
1997
, “
Performance Assessment of an Annular S-Shaped Duct
,”
ASME J. Turbomach.
,
119
(
1
), pp.
149
156
.
9.
Kasper
,
A.
,
Hergt
,
A.
,
Stürzebecher
,
T.
,
Grund
,
S.
,
Flamm
,
J.
, and
Nicke
,
E.
,
2001
, “
Flow Structure Within an Aggressive S-Shaped Intermediate Compressor Duct
,”
J. Phys. Conf. Series
,
1909
(
1
), p.
012025
.
10.
Kasper
,
A.
,
Dygutsch
,
T.
,
Grund
,
S.
,
Hakansson
,
S.
,
Nicke
,
E.
, and
Beversdorff
,
M.
,
2022
, “
Experimental Investigation of an Aggressive S-Shaped Intermediate Compressor Duct
,”
ASME Turbo Expo
,
Rotterdam, Netherlands
,
June 13–17
.
11.
Stürzebecher
,
T.
,
Goinis
,
G.
,
Voss
,
C.
,
Sahota
,
H.
,
Groth
,
P.
, and
Hammer
,
S.
,
2018
, “
Automated Aerodynamic Optimization of an Aggressive S-Shaped Intermediate Compressor Duct
,”
Turbo Expo: Power for Land, Sea, and Air
,
Oslo, Norway
,
June 11–15
.
12.
Ortiz Dueñas
,
C.
,
Miller
,
R. J.
,
Hodson
,
H. P.
, and
Longley
,
J. P.
,
2007
, “
Effect of Length on Compressor Inter-Stage Duct Performance
,”
Volume 6: Turbo Expo 2007, Parts A and B
,
Montreal, Canada
,
May 14–17
,
ASME
, pp.
319
329
.
13.
Sonoda
,
T.
,
Arima
,
T.
, and
Oana
,
M.
,
1998
, “
The Effect of Inlet Boundary Layer Thickness on the Flow Within an Annular S-Shaped Duct
,”
ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition
,
Stockholm, Sweden
,
June 2–5
.
14.
Britchford
,
K. M.
,
Manners
,
A. P.
,
McGuirk
,
J. J.
, and
Stevens
,
S. J.
,
1994
, “
Measurement and Prediction of Low in Annular S-Shaped Ducts
,”
Exp. Therm. Fluid. Sci.
,
9
(
2
), pp.
197
205
.
15.
Becker
,
K.
,
Heitkamp
,
K.
, and
Kügeler
,
E.
,
2010
, “
Recent Progress in a Hybrid-Grid CFD Solver for Turbomachinery Flows
,”
Proceedings 5th European Conference on Computational Fluid Dynamics ECCOMAS CFD
,
Lisbon, Portugal
,
June 14–17
.
16.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-determining Equation for Advanced Turbulence Models
,”
AIAA. J.
,
26
(
11
), pp.
1299
1310
.
17.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbul. Heat Mass Transf.
,
4
(
1
), pp.
625
632
.
18.
Kožulović
,
D.
, and
Röber
,
T.
,
2006
, “
Modelling the Streamline Curvature Effects in Turbomachinery Flows
,”
Turbo Expo: Power for Land, Sea, and Air
,
Barcelona, Spain
,
May 8–11
, pp.
1239
1248
.
19.
Röber
,
T.
,
Kožulović
,
D.
,
Kügeler
,
E.
, and
Nürnberger
,
D.
,
2006
, “Appropriate Turbulence Modelling for Turbomachinery Flows Using a Two-Equation Turbulence Model,”
New Results in Numerical and Experimental Fluid Mechanics V
,
H. J.
Rath
,
C.
Holze
,
H. J.
Heinemann
,
R.
Henke
, and
H.
Hönlinger
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
446
454
.
20.
Eisfeld
,
B.
,
Rumsey
,
C.
, and
Togiti
,
V.
,
2016
, “
Verification and Validation of a Second-Moment-Closure Model
,”
AIAA. J.
,
54
(
5
), pp.
1524
1541
.
21.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA. J.
,
47
(
12
), pp.
2894
2906
.
22.
Kato
,
M.
,
1993
, “
The Modelling of Turbulent Flow Around Stationary and Vibrating Square Cylinders
,”
Turbulent Shear Flow
,
1
(
285
), pp.
1041
1046
.
23.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid. Mech.
,
285
, pp.
69
94
.
24.
Taylor
,
J. V.
, and
Miller
,
R. J.
,
2017
, “
Competing Three-Dimensional Mechanisms in Compressor Flows
,”
ASME J. Turbomach.
,
139
(
2
), p.
021009
.
25.
Johansson
,
P.
,
Robertsson
,
T.
, and
Wallin
,
F.
,
2011
, “
Design of Integrated Turning Vanes for a Compressor Transition Duct
,”
ISABE
,
Gothenburg, Sweden
,
Sept. 12–16
.
You do not currently have access to this content.