Abstract

The present contribution reports the outcome of an experimental and numerical investigation of the behavior of a constant-temperature hot-wire anemometer in the high-subsonic flow up to a Mach number of 0.7 of the organic vapor Novec™ 649 at pressure and temperature levels of typical organic Rankine cycle (ORC) turbine applications. The experiments were carried out in the calibration section of a closed-loop organic vapor wind tunnel test facility enabling the independent variation of Reynolds numbers, Mach numbers, and total temperature within a certain range. It was found that the calibration and the determination of the sensitivity coefficients can be done in a way as proposed by de Souza and Tavoularis for air. The sensitivity coefficients for velocity and density were essentially equal for higher overheat ratios which support the interpretation of the signals and data reduction for turbulent quantities. Computational fluid dynamics (CFD) provided additional insight into potential real gas effects for hot-wire performance.

References

1.
Perry
,
A.
,
1982
,
Hot-Wire-Anemometry
,
Clarendon Press
,
Oxford
.
2.
Fingerson
,
L.
, and
Freymuth
,
P.
,
1983
, “Thermal Anemometers,”
Fluid Mechanics Measurements
,
R.
Goldstein
, ed.,
Hemisphere
,
Washington, DC
, pp.
99
154
.
3.
Lomas
,
C.
,
1986
,
Fundamentals of Hot Wire Anemometry
,
Cambridge University Press
,
Cambridge
.
4.
Bruun
,
H. H.
,
1995
,
Hot-Wire Anemometry: Principles and Signal Analysis
,
Oxford University Press
,
Oxford
.
5.
Comte-Bellot
,
G.
,
1976
, “
Hot-Wire Anemometry
,”
Annu. Rev. Fluid Mech.
,
8
(
1
), pp.
209
231
.
6.
Kovasznay
,
L. S. G.
,
1950
, “
The Hot-Wire Anemometer in Supersonic Flows
,”
J. Aeronaut. Sci.
,
17
(
9
), pp.
565
584
.
7.
Spangenberg
,
W. G.
,
1955
, “
Heat Loss Characteristics of Hot-Wire Anemometers at Various Densities in Transonic and Supersonic Flow
,” NACA Tech. 3381.
8.
Morkovin
,
M. W.
,
1956
, “
Fluctuations and Hot-Wire Anemometry in Compressible Flows
,” AGARDograph No. 24.
9.
Horstman
,
C. C.
, and
Rose
,
W. C.
,
1977
, “
Hot-Wire Anemometry in Transonic Flow
,”
AIAA J.
,
15
(
3
), pp.
395
401
.
10.
Rose
,
W. C.
, and
McDaid
,
E. P.
,
1977
, “
Turbulence Measurement in Transonic Flow
,”
AIAA J.
,
15
(
9
), pp.
1368
1370
.
11.
Stainback
,
P. C.
,
Johnson
,
C. B.
, and
Basnett
,
C. B.
,
1983
, “
Preliminary Measurements of Velocity, Density and Total Temperature Fluctuations in Compressible Subsonic Flow
,”
Proceedings AIAA 21st Aerospace Sciences Meeting
,
Reno, NV
, AIAA-83-0384.
12.
Stainback
,
P. C.
,
1986
, “
Some Influences of Approximate Values for Velocity, Density and Total Temperature Sensitivities on Hot Wire Anemometer Results
,”
Proceedings AIAA 24th Aerospace Sciences Meeting
,
Reno, NV
, AIAA-86-0506.
13.
Stainback
,
P. C.
, and
Nagabushana
,
K. A.
,
1997
, “
Review: Hot-Wire Anemometry in Transonic and Subsonic Slip Flows
,”
ASME J. Fluids Eng.
,
119
(
1
), pp.
14
18
.
14.
Motallebi
,
F.
,
1994
, “
A Review of the Hot-Wire Technique in 2-D Compressible Flows
,”
Prog. Aerosp. Sci.
,
30
(
3
), pp.
267
294
.
15.
Johnston
,
R.
, and
Fleeter
,
S.
,
1997
, “
Compressible Flow Hot-Wire Calibration
,”
Exp. Fluids
,
22
(
5
), pp.
444
446
.
16.
de Souza
,
F.
, and
Tavoularis
,
S.
,
1999
, “
Hot-Wire Response in High-Subsonic Flow
,”
Proceedings AIAA 37th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, AIAA-99-0310.
17.
Cukurel
,
B.
,
Acarer
,
S.
, and
Arts
,
T.
,
2012
, “
A Novel Perspective to High-Speed Cross-Hot-Wire Calibration Methodology
,”
Exp. Fluids
,
53
(
4
), pp.
1073
1085
.
18.
Reinker
,
F.
, and
aus der Wiesche
,
S.
,
2021
, “Application of Hot-Wire Anemometry in the High Subsonic Organic Vapor Flow Regime,”
NICFD 2020, ERCOFTAC Series 28
,
M.
Pini
, ed.,
Springer
,
Berlin
, pp.
135
143
.
19.
Reinker
,
F.
,
Kenig
,
E. Y.
, and
aus der Wiesche
,
S.
,
2018
, “
CLOWT: A Multifunctional Test Facility for the Investigation of Organic Vapor Flows
,”
Proceedings of the ASME 2018 5th Joint US-European Fluids Engineering Summer Conference
,
Montreal, Canada
, paper FEDSM2010-83076.
20.
Reinker
,
F.
,
Hasselmann
,
K.
,
aus der Wiesche
,
S.
, and
Kenig
,
E. Y.
,
2016
, “
Thermodynamics and Fluid Mechanics of a Closed Blade Cascade Wind Tunnel for Organic Vapors
,”
ASME J. Eng. Gas Turbines Power
,
138
(
5
), p.
052601
.
21.
Reinker
,
F.
,
Kenig
,
E. Y.
, and
aus der Wiesche
,
S.
,
2019
, “
Closed Loop Organic Vapor Wind Tunnel CLOWT: Commissioning and Operational Experience
,”
Proceeding 5th ORC Conference
,
Athens, Greece
, paper-ID 47.
22.
NIST
,
2013
,
REFPROP version 9.1
,
NIST
,
Boulder, CO
.
23.
Jones
,
G. S.
,
1994
, “
Wind Tunnel Requirements for Hot-Wire Calibration
,”
Proceedings AIAA 18th Aerospace Ground Testing Meeting
,
Colorado Springs, CO
, AIAA-94-2534.
24.
Reinker
,
F.
,
Wagner
,
R.
,
Passmann
,
M.
,
Hake
,
L.
, and
aus der Wiesche
,
S.
,
2021
, “Performance of a Rotatable Cylinder Pitot Probe in High Subsonic Non-Ideal Gas Flows,”
NICFD 2020, ERCOFTAC Series 28
,
M.
Pini
, ed.,
Springer
,
Berlin
, pp.
144
152
.
25.
Yavuzkurt
,
S.
,
1984
, “
A Guide to Uncertainty Analysis of Hot-Wire Data
,”
ASME J. Fluids Eng.
,
106
(
2
), pp.
181
186
.
26.
Smolyakov
,
A. V.
, and
Tkachenko
,
V. M.
,
1983
,
The Measurement of Turbulent Fluctuations
,
Springer
,
Berlin
.
27.
Cinnella
,
P.
, and
Content
,
C.
,
2016
, “
High-Order Implicit Residual Smoothing Time Scheme for Direct and Large Eddy Simulations of Compressible Flows
,”
J. Comput. Phys.
,
326
(
1
), pp.
1
29
.
28.
Chung
,
T. H.
,
Ajlan
,
M.
,
Lee
,
L. L.
, and
Starling
,
K. E.
,
1988
, “
Generalized Multiparameter Correlation for Nonpolar and Polar Fluid Transport Properties
,”
Ind. Eng. Chem. Res.
,
27
(
4
), pp.
671
679
.
29.
Parnaudeau
,
P.
,
Carlier
,
J.
,
Heitz
,
D.
, and
Lamballais
,
E.
,
2008
, “
Experimental and Numerical Studies of the Flow Over a Circular Cylinder at Reynolds Number 3900
,”
Phys. Fluids
,
20
(
8
), p.
08510
.
You do not currently have access to this content.