Abstract

Axial flow fans are usually characterized by blade sections with low solidity and high inlet flow angles. Two main approaches are followed in the preliminary design phase, to take into account blade interaction effects: the use of available airfoil cascades data (or related correlations) and that of isolated airfoil data together with interference coefficients. The working conditions of low solidity airfoil cascades with highly tangential inflow are not widely studied in the literature, leaving the designer the possibility to rely on limited cascade data or often on the use of isolated airfoil data, with the assumption of negligible interference effects. A systematic investigation of the above working conditions for airfoil cascades is performed with Reynolds-averaged Navier–Stokes simulations. Three different airfoils are used to evaluate the influence of the design lift coefficient and maximum blade thickness. The results provide a better insight into the aerodynamic behavior of airfoil sections in such operating conditions, showing that interactions cannot be neglected. The use of metamodeling coupled with computational fluid dynamics (CFD) simulations is presented as a suitable tool for treating interference effects within the fan design process. The main findings of the present work can be used as a support for design choices as well as for developing design strategies both for the fan blades and for the airfoil sections.

References

1.
Kahane
,
A.
,
1947
, “
Investigation of Axial-Flow Fan and Compressor Rotors Designed for Three-Dimensional Flow
,” NACA-RM-L7D02a.
2.
Herrig
,
L. J.
,
Emery
,
J. C.
, and
Erwin
,
J. R.
,
1957
, “
Systematic Two-Dimensional Cascade Tests of NACA 65-Series Compressor Blades at Low Speeds
,” NACA Report 1368.
3.
Wallis
,
R. A.
,
1983
,
Axial Flow Fans and Ducts
,
John Wiley and Sons
,
New York
.
4.
Castegnaro
,
S.
,
2017
, “
A Critical Analysis of the Differences Among Design Methods for Low-Speed Axial Fans
,”
Proceedings of the ASME Turbo Expo 2017
,
Charlotte, NC
,
June 26–30
.
5.
Castegnaro
,
S.
,
2016
, “
Fan Blade Design Methods: Cascade Versus Isolated Airfoil Approach — Experimental and Numerical Comparison
,”
Proceedings of the ASME Turbo Expo 2016
,
Seoul, South Korea
,
June 13–17
.
6.
Bonanni
,
T.
,
Cardillo
,
L.
,
Corsini
,
A.
,
Delibra
,
G.
,
Sheard
,
A. G.
, and
Volponi
,
D.
,
2016
, “
Derivative Design of Axial Fan Range: From Academia to Industry
,”
Proceedings of the ASME Turbo Expo 2016
,
Seoul, South Korea
,
June 13–17
, Paper No. GT2016-57469.
7.
Bonanni
,
T.
,
Corsini
,
A.
,
Delibra
,
G.
,
Volponi
,
D.
,
Sheard
,
A. G.
, and
Bublitz
,
M.
,
2017
, “
Design of a Single Stage Variable Pitch Axial Fan
,”
Proceedings of the ASME Turbo Expo 2017
,
Charlotte, NC
,
June 26–30
.
8.
Carolus
,
T. H.
, and
Starzmann
,
R.
,
2011
, “
An Aerodynamic Design Methodology for Low Pressure Axial Fans With Integrated Airfoil Polar Prediction
,”
Proceedings of the ASME Turbo Expo 2011
,
Vancouver, British Columbia, Canada
,
June 6–10
.
9.
Louw
,
F. G.
,
Bruneau
,
P. R. P.
,
von Backström
,
T. W.
, and
van der Spuy
,
S. J.
,
2012
, “
The Design of an Axial Flow Fan for Application in Large Air-Cooled Heat Exchangers
,”
Proceedings of the ASME Turbo Expo 2012
,
Copenhagen, Denmark
,
June 11–15
.
10.
Herrig
,
L. J.
,
Emery
,
J. C.
, and
Erwin
,
J. R.
,
1951
, “
Effect of Section Thickness and Trailing-Edge Radius on the Performance of NACA 65-Series Compressor Blades in Cascade at Low Speeds
,” NACA RM L51J16.
11.
Erwin
,
J. R.
, and
Yacobi
,
L. A.
,
1953
, “
Method of Estimating the Incompressible-Flow Pressure Distribution of Compressor Blade Sections at Design Angle of Attack
,” NACA RM L53F17.
12.
Emery
,
J. C.
,
1956
, “
Low-Speed Cascade Investigation of Loaded Leading-Edge Compressor Blades
,” NACA-RM-L55J05.
13.
Emery
,
J. C.
,
1957
, “
Low-Speed Cascade Investigation of Thin Low-Camber NACA 65-Series Blade Sections at High Inlet Angles
,” NACA-RM-L57E03.
14.
Hay
,
N.
,
Metcalfe
,
R.
, and
Reizes
,
J. A.
,
1978
, “
A Simple Method for the Selection of Axial Fan Blade Profiles
,”
Proc. Inst. Mech. Eng.
,
192
(
1
), pp.
269
275
.
15.
Allan
,
W. K.
,
1961
, “
Theoretical Analysis of the Performance of Cascade Blades
,” A.R.C. 23061, July.
16.
Corsini
,
A.
, and
Rispoli
,
F.
,
2004
, “
Using Sweep to Extend the Stall-Free Operational Range in Axial Fan Rotors
,”
Proc. Inst. Mech. Eng. Part A
,
218
(
3
), pp.
129
139
.
17.
Lindemann
,
T. B.
,
Friedrichs
,
J.
, and
Stark
,
U.
,
2014
, “
Development of a New Design Method for High Efficiency Swept Low Pressure Axial Fans With Small Hub/Tip Ratio
,”
Proceedings of the ASME Turbo Expo 2014
,
Düsseldorf, Germany
,
June 16–20
.
18.
Buisson
,
M.
,
Ferrand
,
P.
,
Soulat
,
L.
,
Aubert
,
S.
,
Moreau
,
S.
,
Rambeau
,
C.
, and
Henner
,
M.
,
2013
, “
Optimal Design of an Automotive Fan Using the TurbOpty Meta-Model
,”
Comput. Fluids
,
80
, pp.
207
213
.
19.
Canepa
,
E.
,
Cattanei
,
A.
,
Mazzocut Zecchin
,
F.
,
Milanese
,
G.
, and
Parodi
,
D.
,
2016
, “
An Experimental Investigation on the Tip Leakage Noise in Axial-Flow Fans With Rotating Shroud
,”
J. Sound Vib.
,
375
, pp.
115
131
.
20.
Cravero
,
C.
, and
Milanese
,
G.
,
2020
, “
Analysis of the Design Bounds in Performance Limits for Industrial Axial Flow Fans
,”
Proceedings of the ASME Turbo Expo 2020
,
Virtual, Online
,
Sept. 21–25
.
21.
Louw
,
F. G.
,
von Backström
,
T. W.
, and
van der Spuy
,
S. J.
,
2015
, “
Lift and Drag Characteristics of an Air-Cooled Heat Exchanger Axial Flow Fan
,”
ASME J. Fluids Eng.
,
137
(
8
), p.
081101
.
22.
Carmichael
,
R. L.
,
2001
, “
Algorithm for Calculating Coordinates of Cambered NACA Airfoils at Specified Chord Locations
,” November, AIAA Paper 2001-5235.
23.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.
24.
Ansys CFX
,
2016
,
Solver Theory Guide, Release 17.1
,
ANSYS Inc
.
25.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
26.
Wallin
,
S.
, and
Johansson
,
A.
,
2000
, “
An Explicit Algebraic Reynolds Stress Model for Incompressible and Compressible Flows
,”
J. Fluid Mech.
,
403
, pp.
89
132
.
27.
Chen
,
W. L.
,
Lien
,
F. S.
, and
Leschziner
,
M. A.
,
1998
, “
Computational Prediction of Flow Around Highly Loaded Compressor-Cascade Blades With Non-Linear Eddy-Viscosity Models
,”
Int. J. Heat Fluid Flow
,
19
(
4
), pp.
307
319
.
28.
Corsini
,
A.
, and
Rispoli
,
F.
,
2005
, “
Flow Analyses in a High-Pressure Axial Ventilation Fan With a Non-Linear Eddy-Viscosity Closure
,”
Int. J. Heat Fluid Flow
,
17
(
3
), pp.
108
155
.
29.
Gerolymos
,
G. A.
,
Neubauer
,
J.
,
Sharma
,
V. C.
, and
Vallet
,
I.
,
2002
, “
Improved Prediction of Turbomachinery Flows Using Near-Wall Reynolds-Stress Model
,”
ASME J. Turbomach.
,
124
(
1
), pp.
86
89
.
30.
Morsbach
,
C.
,
2016
, “
Reynolds Stress Modelling for Turbomachinery Flow Applications
,”
Ph.D. Thesis
,
Technische Universität
,
Darmstadt
.
31.
Dick
,
E.
, and
Kubacki
,
S.
,
2017
, “
Transition Models for Turbomachinery Boundary Layer Flows: A Review
,”
Int. J. Turbomach. Propul. Power
,
2
(
2
).
32.
Horlock
,
J. H.
,
1958
,
Axial Flow Compressors: Fluid Mechanics and Thermodynamics
,
Butterworths Scientific Publications
,
London
.
33.
Bassi
,
A.
,
2012
, “
A Scilab Radial Basis Functions Toolbox
,”
Thesis
,
University of Padova
,
Padova, Italy
.
You do not currently have access to this content.