Abstract

Increasing turbine inlet temperature is beneficial to enhance turbine performance. However, this also results in stringent cooling requirements. Unlike turbines in air cycle machines, the partial admission axial impulse turbines for underwater vehicles can utilize the abundant seawater as the cooling medium. In addition, the short blades cannot accommodate the complex cooling channels used in aero-engines, and the alternative way is jet impingement liquid cooling. This paper proposes a fluid–thermal–structural coupling method to investigate the performance of partial admission axial impulse turbines with water-cooling on the rotating wheel front surface. The volume of fluid multiphase model is employed to study the transient gas–liquid interaction, while the Lee model is chosen to model the heat and mass transfer during phase change. Also, a two-way weakly coupling method among fluid, thermal, and structure is utilized to account for fluid–structure interaction. The results show that the temperature distribution at the turbine wheel drops significantly with the jet impingement liquid cooling. The turbine efficiency is also reduced by 3.38% due to the mixing of cooling medium and gas. From stress analysis, the use of water-cooling can minimize turbine damage and ensure stable turbine operation. This study provides insight into the cooling method for partial admission axial impulse turbines for the underwater vehicle.

References

1.
Moustapha
,
H.
,
Zelesky
,
M. F.
,
Baines
,
N. C.
, and
Japikse
,
D.
,
2003
,
Axial and Radial Turbines
,
Concepts NREC Press
,
White River Junction, VT
.
2.
Zhengping
,
Z.
,
Songtao
,
W.
,
Huoxing
,
L.
, and
Weihao
,
Z.
,
2018
,
Axial Turbine Aerodynamics for Aero-Engines: Flow Analysis and Aerodynamics Design
,
Springer Press
,
Singapore
.
3.
Zhou
,
Z.
,
Li
,
H.
,
Xie
,
G.
, and
You
,
R.
,
2020
, “
Film Cooling Performance on Turbine Blade Suction Side With Various Film Cooling Hole Arrangements
,”
Proceedings of the ASME Turbo Expo 2020: Power for Land, Sea, and Air
, ASME Paper No. GT2020-14836.
4.
Han
,
J. C.
,
Dutta
,
S.
,
Ekkad
,
S.
, and
Dutta
,
S.
,
2013
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
5.
Bunker
,
R. S.
,
2017
, “
Evolution of Turbine Cooling
,”
Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
, ASME Paper No. GT2017-63205.
6.
Zheng
,
Z.
,
Shi
,
X.
,
Yi
,
Y.
, and
Shi
,
H.
,
2006
, “
Development and Application of Gas Turbine to Torpedo Power
,”
Torpedo Technol.
,
14
(
4
), pp.
11
15
.
7.
Kiely
,
D. H.
, and
Moore
,
J. T.
,
2002
, “
Hydrocarbon Fueled UUV Power Systems
,”
Proceedings of the 2002 Workshop on Autonomous Underwater Vehicles
,
San Antonio, TX
,
June 20–21
, pp.
121
128
.
8.
Qin
,
K.
,
Wang
,
H.
,
Wang
,
X.
,
Sun
,
Y.
, and
Luo
,
K.
,
2020
, “
Thermodynamic and Experimental Investigation of a Metal Fuelled Steam Rankine Cycle for Unmanned Underwater Vehicles
,”
Energy Convers. Manage.
,
223
, p.
113281
.
9.
Qin
,
K.
,
Wang
,
H.
,
Qi
,
J.
,
Sun
,
J.
, and
Luo
,
K.
,
2022
, “
Aerodynamic Design and Experimental Validation of High Pressure Ratio Partial Admission Axial Impulse Turbines for Unmanned Underwater Vehicles
,”
Energy
,
239
, p.
122242
.
10.
Wang
,
H.
,
Luo
,
K.
,
Yang
,
Q.
,
Huang
,
C.
, and
Qin
,
K. A.
,
2021
, “
Fluid-Thermal Analysis of Partial Admission Axial Turbines
,”
Proceedings of the Global Power and Propulsion Society
,
Xi'an, Shaanxi, China
,
Paper No. GPPS-TC-2021-0105
.
11.
Fraas
,
A. P.
(
1980
). “
Summary of Research and Development Effort on Air and Water Cooling of Gas Turbine Blades
,”
Oak Ridge National Lab.
, Technical Report No. ORNL/TM-6254.
12.
Bayley
,
F. J.
, and
Martin
,
B. W.
,
1970
, “
A Review of Liquid Cooling of High-Temperature Gas-Turbine Rotor Blades
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
219
227
.
13.
Fossen
,
G.
, and
Stepka
,
F. S.
(
1979
). “
Review and Status of Liquid-Cooling Technology for Gas Turbines
,”
NASA Lewis Research Center
,
Technical Report No. 19790014256
.
14.
Horner
,
M. W.
,
Cincotta
,
G. A.
, and
Caruvana
,
A.
,
1981
, “
Test Verification of Water Cooled Gas Turbine Technology
,”
Proceedings of the ASME Turbo Expo 1981: Power for Land, Sea, and Air
, ASME Paper No. 81-GT-66.
15.
Schilke
,
P. W.
, and
DeGeorge
,
C. L.
,
1982
, “
Water-Cooled Gas Turbine Monometallic Nozzle Fabrication and Testing
,”
ASME J. Eng. Power
,
104
(
3
), pp.
607
616
.
16.
Amano
,
R. S.
,
1982
, “
Numerical Study of Liquid Cooling Gas Turbine Blade
,”
Proceedings of the ASME Turbo Expo 1982: Power for Land, Sea, and Air
, ASME Paper No. 82-GT-116.
17.
Ladisch
,
H.
,
Schulz
,
A.
, and
Bauer
,
H. R.
,
2009
, “
Heat Transfer Measurements on a Turbine Airfoil With Pressure Side Separation
,”
Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea, and Air
, ASME Paper No. GT2009-59904.
18.
Duchaine
,
F.
,
Maheu
,
N.
,
Moureau
,
V.
,
Balarac
,
G.
, and
Moreau
,
S.
,
2013
, “
Large-Eddy Simulation and Conjugate Heat Transfer Around a Low-Mach Turbine Blade
,”
ASME J. Turbomach.
,
136
(
5
), p.
051015
.
19.
Lorenz
,
M.
,
Schulz
,
A.
, and
Bauer
,
H. J.
,
2011
, “
Experimental Study of Surface Roughness Effects on a Turbine Airfoil in a Linear Cascade—Part I: External Heat Transfer
,”
ASME J. Turbomach.
,
134
(
4
), p.
041006
.
20.
Elhabeshi
,
N. I.
, and
Guo
,
S. M.
,
2005
, “
The Experimental and Computational Study of a New Cooling Strategy for Turbomachinery Rotational Components
,”
Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air
, ASME Paper No. GT2005-68660.
21.
Townsend
,
J.
,
Kerrebrock
,
J.
, and
Stickler
,
D.
,
2008
, “
Experimental Evaluation of a Turbine Blade With Potassium Evaporative Cooling
,”
J. Propul. Power
,
24
(
3
), pp.
410
415
.
22.
Lytvynenko
,
O.
,
Tarasov
,
O.
,
Mykhailova
,
I.
, and
Avdieieva
,
O.
,
2020
, “
Possibility of Using Liquid-Metals for Gas Turbine Cooling System
,”
Proceedings of the 3rd International Conference on Design, Simulation, Manufacturing: The Innovation Exchange
,
Kharkiv, Ukraine, June 9–12
, pp.
312
321
.
23.
Zhang
,
Y.
,
Cao
,
Y.
,
Feng
,
Y.
,
Li
,
D.
, and
Qin
,
J.
,
2021
, “
Numerical Simulation of Convective Heat Transfer for an Internally Cooled Gas Turbine Using Liquid Metal
,”
Int. J. Therm. Sci.
,
171
, p.
107230
.
24.
Nirmalan
,
N. V.
,
Weaver
,
J. A.
, and
Hylton
,
L. D.
,
1998
, “
An Experimental Study of Turbine Vane Heat Transfer With Water–Air Cooling
,”
ASME J. Turbomach.
,
120
(
1
), pp.
50
60
.
25.
Ragab
,
R.
, and
Wang
,
T.
,
2018
, “
An Experimental Study of Mist/Air Film Cooling With Fan-Shaped Holes on an Extended Flat Plate—Part 1: Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
4
), p.
042201
.
26.
Ragab
,
R.
, and
Wang
,
T.
,
2018
, “
An Experimental Study of Mist/Air Film Cooling With Fan-Shaped Holes on an Extended Flat Plate—Part II: Two-Phase Flow Measurements and Droplet Dynamics
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
4
), p.
042202
.
27.
Wang
,
T.
, and
Ragab
,
R.
,
2019
, “
Investigation of Applicability of Transporting Water Mist for Cooling Turbine Blades
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
1
), p.
011009
.
28.
Wang
,
T.
, and
Abdelmaksoud
,
R.
,
2021
, “
Interactions of Wakes and Shock Waves With Two-Phase Air/Mist Cooling in a Transonic Gas Turbine Stage
,”
Int. J. Heat Mass Transfer
,
179
, p.
121652
.
29.
Abdelmaksoud
,
R.
, and
Wang
,
T.
,
2021
, “
A Numerical Investigation of Air/Mist Cooling Through a Conjugate, Rotating 3D Gas Turbine Blade With Internal, External, and Tip Cooling
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
2
), p.
021004
.
30.
Abdelmaksoud
,
R.
,
Wang
,
T.
, and
Zhao
,
L.
,
2022
, “
Validation of a Two-Phase CFD Model Air/Mist Film Cooling With Experimental Details—Part II: CFD Model Validation
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
11
), p.
111010
.
31.
Cao
,
J.
,
Ye
,
M.
,
Li
,
H.
,
Wang
,
T.
, and
Che
,
Z.
,
2022
, “
Heat Transfer Enhancement by Mist/air Two-Phase Flow in a High-Temperature Channel
,”
Int. J. Heat Mass Transfer
,
193
, p.
122966
.
32.
Feistel
,
R.
,
2018
, “
Thermodynamic Properties of Seawater, Ice and Humid Air: TEOS-10, Before and Beyond
,”
Ocean Sci.
,
14
(
3
), pp.
471
502
.
33.
Nayar
,
K. G.
,
Sharqawy
,
M. H.
,
Banchik
,
L. D.
, and
Lienhard V
,
J. H.
,
2016
, “
Thermophysical Properties of Seawater: A Review and New Correlations That Include Pressure Dependence
,”
Desalination
,
390
, pp.
1
24
.
34.
ANSYS
,
2017
,
ANSYS User's Guide Releases 18.2
,
ANSYS Inc.
,
Concord, MA
.
35.
Antoine
,
C.
,
1888
, “
Vapor Pressure: A New Relationship Between Pressure and Temperature
,”
CR Acad. Sci.
,
107
, pp.
681
685
.
36.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2010
,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.0, National Institute of Standards and Technology
,
Standard Reference Data Program
,
Gaithersburg
.
37.
Aissa
,
M.
,
Verstraete
,
T.
, and
Vuik
,
C.
,
2017
, “
Toward a GPU-Aware Comparison of Explicit and Implicit CFD Simulations on Structured Meshes
,”
Comput. Math. Appl.
,
74
(
1
), pp.
201
217
.
38.
Cavalca
,
D. F.
,
Bringhenti
,
C.
,
Campos
,
G. B.
,
Tomita
,
J. T.
, and
Silva
,
O. F. R.
,
2018
, “
Development and Convergence Analysis of an Effective and Robust Implicit Euler Solver for 3D Unstructured Grids
,”
J. Comput. Phys.
,
367
, pp.
399
415
.
39.
Back
,
L. H.
,
Massier
,
P. F.
, and
Gier
,
H. L.
,
1964
, “
Convective Heat Transfer in a Convergent-Divergent Nozzle
,”
Int. J. Heat Mass Transfer
,
7
(
5
), pp.
549
568
.
40.
DeLise
,
J. C.
, and
Naraghi
,
M.
,
1995
, “
Comparative Studies of Convective Heat Transfer Models for Rocket Engines
,”
31st Joint Propulsion Conference and Exhibit
,
San Diego, CA
,
June 10–12
,
Paper No. AIAA-95-2499
.
41.
Marineau
,
E. C.
,
Schetz
,
J. A.
, and
Neel
,
R. E.
,
2007
, “
Turbulent Navier-Stokes Simulations of Heat Transfer With Complex Wall Temperature Variations
,”
J. Thermophys. Heat Transfer
,
21
(
3
), pp.
525
535
.
42.
Yi
,
J.
,
Yanli
,
M.
,
Weichen
,
W.
, and
Liwu
,
S.
,
2010
, “
Inhibition Effect of Water Injection on Afterburning of Rocket Motor Exhaust Plume
,”
Chin. J. Aeronaut.
,
23
(
6
), pp.
653
659
.
43.
Yu
,
S.
,
2015
, “
Simulation and Experiment Research on Temperature Reduction of Rocket Engine Jet by Water Injection
,” Ph.D. thesis,
Beijing institute of Technology
,
Beijing, China
.
You do not currently have access to this content.