Abstract

Multidisciplinary design optimization of transonic rotors, especially focusing on improving the aeroacoustic performance, has received little attention. This article employs an automatic design optimization approach to reduce the shock-associated tone noise and to increase the adiabatic efficiency of NASA rotor 37. An evolutionary algorithm for multi-objective trade-offs searching is used to obtain the noise-efficiency Pareto front. Three-dimensional Reynolds-averaged Navier–Stokes simulations are directly applied in the optimization loop for aeroacoustic and aerodynamic analysis. Significant noise reduction and efficiency increase have been achieved. Two optimized designs corresponding to the endpoints of the Pareto front have been analyzed comprehensively from the perspectives of rotor characteristics, noise performance, and flow and acoustic fields, to understand the mechanisms responsible for performance improvements.

References

1.
Morfey
,
C. L.
, and
Fisher
,
M. J.
,
1970
, “
Shock-Wave Radiation From a Supersonic Ducted Rotor
,”
Aeronaut. J.
,
74
(
715
), pp.
579
585
.
2.
Morfey
,
C. L.
,
1964
, “
Rotating Pressure Patterns in Ducts: Their Generation and Transmission
,”
J. Sound Vib.
,
1
(
1
), pp.
60
87
.
3.
McAlpine
,
A.
, and
Fisher
,
M. J.
,
2001
, “
On the Prediction of “Buzz-Saw” Noise in Aero-Engine Inlet Ducts
,”
J. Sound Vib.
,
248
(
1
), pp.
123
149
.
4.
Denton
,
J. D.
,
1993
, “
The 1993 Igti Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
5.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: Nsga-ii
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
6.
Sasaki
,
D.
, and
Obayashi
,
S.
,
2005
, “
Efficient Search for Trade-Offs by Adaptive Range Multi-Objective Genetic Algorithms
,”
J. Aero. Comput. Inform. Comm.
,
2
(
1
), pp.
44
64
.
7.
Lian
,
Y.
, and
Liou
,
M. S.
,
2005
, “
Multiobjective Optimization Using Coupled Response Surface Model and Evolutionary Algorithm
,”
AIAA J.
,
43
(
6
), pp.
1316
1325
.
8.
Pierret
,
S.
,
Coelho
,
R. F.
, and
Kato
,
H.
,
2007
, “
Multidisciplinary and Multiple Operating Points Shape Optimization of Three-Dimensional Compressor Blades
,”
Struct. Multidiscipl. Optim.
,
33
(
1
), pp.
61
70
.
9.
Shahpar
,
S.
,
2004
, “
Design of Experiment, Screening and Response Surface Modelling to Minimise the Design Cycle Time
,”
VKI Lecture Series on Optimisation Methods and Tools for Multicriteria/Multidisciplinary Design
,
Brussels, Belgium
,
LS-2004-08
.
10.
Samad
,
A.
,
Kim
,
K. Y.
,
Goel
,
T.
, and
Haftka
,
R. T.
,
2008
, “
Multiple Surrogate Modeling for Axial Compressor Blade Shape Optimization
,”
J. Propul. Power
,
24
(
2
), pp.
301
310
.
11.
Benini
,
E.
,
2004
, “
Three-Dimensional Multi-Objective Design Optimization of a Transonic Compressor Rotor
,”
J. Propul. Power
,
20
(
3
), pp.
559
565
.
12.
Ellbrant
,
L.
,
Eriksson
,
L. E.
, and
Mårtensson
,
H.
,
2012
, “
Design of Compressor Blades Considering Efficiency and Stability Using CFD Based Optimization
,”
Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
,
Copenhagen, Denmark
,
June 11–15
, Vol. 8, ASME, pp.
371
382
.
13.
Luo
,
C.
,
Song
,
L.
,
Li
,
J.
, and
Feng
,
Z.
,
2012
, “
A Study on Multidisciplinary Optimization of an Axial Compressor Blade Based on Evolutionary Algorithms
,”
ASME J Turbomach.
,
134
(
5
), p.
054501
.
14.
Baert
,
L.
,
Beaucaire
,
P.
,
Leborgne
,
M.
,
Sainvitu
,
C.
, and
Lepot
,
I.
,
2017
, “
Tackling Highly Constrained Design Problems: Efficient Optimisation of a Highly Loaded Transonic Compressor
,”
Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
, Vol. 2C, ASME, p. V02CT47A017.
15.
Polynkin
,
A.
,
Toropov
,
V.
, and
Shahpar
,
S.
,
2010
, “
Multidisciplinary Optimization of Turbomachinary Based on Metamodel Built by Genetic Programming
,”
13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference
,
Fort Worth, TX
,
Sept. 13–15
,
AIAA 2010-9397
.
16.
Wilson
,
A. G.
,
Stieger
,
R.
,
Coupland
,
J.
,
Smith
,
N. H.
, and
Humphreys
,
N. D.
,
2011
, “
Multi-disciplinary Optimisation of a Transonic Fan for Low Tone Noise
,”
17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference)
,
Portland, OR
,
June 5–8
,
AIAA 2011-2950
.
17.
Shahpar
,
S.
,
2001
, “
SOFT: A New Design and Optimisation Tool for Turbomachinery
,”
Proceedings of the EUROGEN2001 Conference Evolutionary Methods for Design, Optimisation and Control
,
Athens, Greece
,
Sept. 19–21
.
18.
Denton
,
J. D.
,
1997
, “
Lessons From Rotor 37
,”
J. Therm.Sci.
,
6
(
1
), pp.
1
13
.
19.
Ameri
,
A.
,
2009
, “
NASA Rotor 37 CFD Code Validation Glenn-ht Code
,”
47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition
,
Orlando, FL
,
Jan. 5–8
,
AIAA 2009-1060
.
20.
Dunham
,
J.
,
1998
, “
CFD Validation for Propulsion System Components
,”
Advisory Group for Aerospace Research and Development (AGARD), Neuilly-Sur-Seine, France, Technical Report, AGARD AR-355
.
21.
Reid
,
L.
, and
Moore
,
R.
,
1978
, “
Design and Overall Performance of Four Highly Loaded, High-Speed Inlet Stages for an Advanced High-Pressure Ratio Core Compressor
,”
October, NASA-TP-1337, Technical Report
.
22.
Suder
,
K. L.
,
1996
, “
Experimental Investigation of the Flow Field in a Transonic, Axial Flow Compressor With Respect to the Development of Blockage and Loss
,”
NASA-TM-107310, Technical Report
.
23.
Hawkings
,
D.
,
1972
, “
Transonic Fan Noise
,”
Ministry of Defence (Procurement Executive), Aeronautical Research Council, March, CP No. 1226: 1–11, Technical Report
.
24.
Lapworth
,
L.
,
2004
, “
Hydra-CFD: A Framework for Collaborative CFD Development
,”
International Conference on Scientific and Engineering Computation (IC-SEC)
,
Singapore
,
June 30–July 2
.
25.
Wilson
,
A. G.
,
2001
, “
A Method for Deriving Tone Noise Information From CFD Calculations on the Aero-Engine Fan Stage
,”
North Atlantic Treaty Organisation (NATO) the Research and Technology Organisation (RTO) Applied Vehicle Technology Panel (AVT) Symposium Part A—Developments in Computational Aero- and Hydro-Acoustics, RTO/NATO
,
Manchester, UK
,
Oct. 8–11
.
26.
Moinier
,
P.
, and
Michael
,
B. G. M.
,
2005
, “
Eigenmode Analysis for Turbomachinery Applications
,”
J. Propul. Power
,
21
(
6
), pp.
973
978
.
27.
Morfey
,
C. L.
,
1971
, “
Acoustic Energy in Non-Uniform Flows
,”
J. Sound Vib.
,
14
(
2
), pp.
159
170
.
28.
Shahpar
,
S.
, and
Lapworth
,
L.
,
2003
, “
PADRAM: Parametric Design and Rapid Meshing System for Turbomachinery Optimisation
,”
Proceedings of the ASME Turbo Expo 2003, Collocated With the 2003 International Joint Power Generation Conference, Vol. 6: Turbo Expo 2003, Parts A and B, American Socierty of Mechanical Engineers
,
Atlanta, GA
,
June 16–19
, pp.
579
590
.
29.
Wilson
,
A. G.
, and
Coupland
,
J.
,
2004
, “
Numerical Prediction of Aeroengine Fan Stage Tone Noise Sources Using CFD
,”
Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering.
,
Jyväskylä, Finland
,
July 24–28
.
30.
Chima
,
R.
,
2009
, “
SWIFT Code Assessment for Two Similar Transonic Compressors
,”
47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition
,
Orlando, FL
,
Jan. 5–8
,
AIAA 2009-1058
.
31.
Seshadri
,
P.
,
Parks
,
G. T.
, and
Shahpar
,
S.
,
2015
, “
Leakage Uncertainties in Compressors: The Case of Rotor 37
,”
J. Propul. Power
,
31
(
1
), pp.
456
466
.
32.
Cumpsty
,
N. A.
,
2010
, “
Some Lessons Learned
,”
ASME J Turbomach.
,
132
(
4
), p.
041018
.
33.
Shabbir
,
A.
,
Celestina
,
M. L.
,
Adamczyk
,
J. J.
, and
Strazisar
,
A. J.
,
1997
, “
The Effect of Hub Leakage Flow on Two High Speed Axial Compressor Rotors
,”
Proceedings of the ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition, Vol. 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
,
Orlando, FL
,
June 2–5
,
V001T03A053
.
34.
Fink
,
M. R.
,
1971
, “
Shock Wave Behavior in Transonic Compressor Noise Generation
,”
J. Eng. Power
,
93
(
4
), pp.
397
403
.
35.
Leary
,
S.
,
Bhaskar
,
A.
, and
Keane
,
A.
,
2003
, “
Optimal Orthogonal-Array-Based Latin Hypercubes
,”
J. Appl. Stat.
,
30
(
5
), pp.
585
598
.
36.
Shahpar
,
S.
,
2005
, “
SOPHY: An Integrated CFD Based Automatic Design Optimization System
,”
Proceedings of the 17th ISABE (International Society for Air Breathing Engines) Conference
,
Munich, Germany
,
Sept. 4–9
.
37.
Brooks
,
C.
,
Forrester
,
A.
,
Keane
,
A.
, and
Shahpar
,
S.
,
2011
, “
Multifidelity Design Optimization of a Transonic Compressor Rotor
,”
Proceedings of the 9th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
,
Istanbul, Turkey
,
Mar. 21–25
, Vol. 2,pp. 1267–1276.
38.
Shahpar
,
S.
,
Polynkin
,
A.
, and
Toropov
,
V.
,
2008
, “
Large Scale Optimization of Transonic Axial Compressor Rotor Blades
,”
Proceedings of the 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Schaumburg, IL
,
Apr. 7–10
,
AIAA 2008-2056
.
39.
Denton
,
J. D.
,
2002
, “
The Effects of Lean and Sweep on Transonic Fan Performance, a Computational Study
,”
Task Q.
,
6
(
1
), pp.
7
23
. https://task.gda.pl/files/quart/TQ2002/01/TQ0106A7.PDF
You do not currently have access to this content.