Abstract

Stall and surge behaviors deteriorate the compressor performance and stability of the operating range. To avoid the effect of stall and surge behaviors, the characteristics of the pre-stall disturbance have been considered in recent years. However, investigations of the pre-stall and stall disturbances in centrifugal compressors remain insufficient owing to the various geometric structures in centrifugal compressors. In this study, a centrifugal compressor with a volute and vaneless diffuser was studied using high-response static pressure measurements and numerical simulations. The pressure disturbance evolution from near-choke to near-surge conditions was obtained, and the characteristics of the pre-stall and stall disturbances were analyzed. The results showed that the compressor instability route could be divided into pre-stall and stall stages, which could be accurately predicted based on the periodic static pressure irregularity and skewness. The pre-stall stage was dominated by the rotating instability (RI) phenomenon, and the frequency of the RI was 43% of the blade passing frequency at 70% Nmax. The experimental results demonstrated that the first onset of RI occurred at the 120 deg–180 deg circumferential position and maintained a local pattern; then, RI occurred over the whole annulus when the flowrate was decreased. RI was induced by the vortex structure attached to the casing wall, leading to a sharp pressure trough in the static pressure trace. The RI exhibited an evolution pattern of initially increasing and then fading, which can be explained by the enlargement and movement of the impeller inlet vortex. The large blockage effect of RI triggered a stall with disturbances at 20% and 80% of the impeller shaft frequency, and these disturbance frequencies had a trend of shifting to one dominant frequency of 22% the impeller shaft frequency. Furthermore, stall cell merging and the coexistence of RI/stall phenomena occurred during the stall stage.

References

1.
Krain
,
H.
,
2005
, “
Review of Centrifugal Compressor’s Application and Development
,”
ASME J. Turbomach.
,
127
(
1
), pp.
25
34
.
2.
Tan
,
C. S.
,
Day
,
I.
,
Morris
,
S.
, and
Wadia
,
A.
,
2010
, “
Spike-Type Compressor Stall Inception, Detection, and Control
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
275
300
.
3.
Yang
,
C.
,
Wang
,
W.
,
Zhang
,
H.
,
Yang
,
C.
, and
Li
,
Y.
,
2018
, “
Investigation of Stall Process Flow Field in Transonic Centrifugal Compressor With Volute
,”
Aerosp. Sci. Technol.
,
81
, pp.
53
64
.
4.
Moore
,
F. K.
, and
Greitzer
,
E. M.
,
1986
, “
A Theory of Post-Stall Transients in Axial Compression Systems: Part I—Development of Equations
,”
ASME J. Eng. Gas Turbines Power
,
108
(
1
), pp.
68
76
.
5.
McDougall
,
N. M.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
1990
, “
Stall Inception in Axial Compressors
,”
ASME J. Turbomach.
,
112
(
1
), pp.
116
123
.
6.
Day
,
I. J.
,
1993
, “
Stall Inception in Axial Flow Compressors
,”
ASME J. Turbomach.
,
115
(
1
), pp.
1
9
.
7.
Day
,
I. J.
,
2015
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.
8.
Hewkin-Smith
,
M.
,
Pullan
,
G.
,
Grimshaw
,
S. D.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2019
, “
The Role of Tip Leakage Flow in Spike-Type Rotating Stall Inception
,”
ASME J. Turbomach.
,
141
(
6
), p.
061010
.
9.
Camp
,
T. R.
, and
Day
,
I. J.
,
1998
, “
1997 Best Paper Award—Turbomachinery Committee: A Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor
,”
ASME J. Turbomach.
,
120
(
3
), pp.
393
401
.
10.
Hoing
,
D.
,
Tan
,
C. S.
,
Vo
,
H. D.
, and
Greitzer
,
E. M.
,
1999
, “
Role of Blade Passage Flow Structures in Axial Compressor Rotating Stall Inception
,”
ASME J. Turbomach.
,
121
(
4
), pp.
735
742
.
11.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011023
.
12.
Mailach
,
R.
,
Lehmann
,
I.
, and
Vogeler
,
K.
,
2000
, “
Rotating Instabilities in an Axial Compressor Originating From the Fluctuating Blade Tip Vortex
,”
ASME J. Turbomach.
,
123
(
3
), pp.
453
460
.
13.
Marz
,
J.
,
Hah
,
C.
, and
Neise
,
W.
,
2002
, “
An Experimental and Numerical Investigation Into the Mechanisms of Rotating Instability
,”
ASME J. Turbomach.
,
124
(
3
), pp.
367
374
.
14.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Yoshida
,
S.
,
Minami
,
T.
,
Yamada
,
K.
, and
Furukawa
,
M.
,
2004
, “
Effect of Tip Clearance on Stall Evolution Process in a Low-Speed Axial Compressor Stage
,”
Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air. Volume 5: Turbo Expo 2004, Parts A and B
,
Vienna, Austria
,
June 14–17
,
ASME
, pp.
385
394
.
15.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Yoshida
,
S.
, and
Furukawa
,
M.
,
2002
, “
Short and Long Length-Scale Disturbances Leading to Rotating Stall in an Axial Compressor Stage With Different Stator/Rotor Gaps
,”
ASME J. Turbomach.
,
124
(
3
), pp.
376
384
.
16.
Nishioka
,
T.
,
Kanno
,
T.
, and
Hayami
,
H.
,
2008
, “
Rotating Stall Inception From Spike and Rotating Instability in a Variable-Pitch Axial-Flow Fan
,”
Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air. Volume 6: Turbomachinery, Parts A, B, and C
,
Berlin, Germany
,
June 9–13
,
ASME
, pp.
2045
2056
.
17.
Nishioka
,
T.
,
Kuroda
,
S.
,
Nagano
,
T.
, and
Hayami
,
H.
,
2006
, “
Influence of Rotating Instability on Stall Inception Patterns in a Variable-Pitch Axial-Flow Fan
,”
Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 6: Turbomachinery, Parts A and B
,
Barcelona, Spain
,
May 8–11
, pp.
303
312
.
18.
Wu
,
Y.
,
Li
,
Q.
,
Tian
,
J.
, and
Chu
,
W.
,
2012
, “
Investigation of Pre-Stall Behavior in an Axial Compressor Rotor—Part I: Unsteadiness of Tip Clearance Flow
,”
ASME J. Turbomach.
,
134
(
5
), p.
051027
.
19.
Yang
,
F.
,
Wu
,
Y.
,
Zhang
,
Z.
, and
Wang
,
Z.
,
2020
, “
Periodic Unsteadiness of Tip Clearance Vortex in an Axial Compressor Rotor
,”
Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Volume 2E: Turbomachinery
,
Virtual, Online
,
London, UK
,
Sept. 21–25
, p.
V02ET41A023
.
20.
Juan
,
D.
,
Jichao
,
L.
,
Lipeng
,
G.
,
Feng
,
L.
, and
Jingyi
,
C.
,
2016
, “
The Impact of Casing Groove Location on Stall Margin and Tip Clearance Flow in a Low-Speed Axial Compressor
,”
ASME J. Turbomach.
,
138
(
12
), p.
121007
.
21.
Everitt
,
J. N.
, and
Spakovszky
,
Z. S.
,
2012
, “
An Investigation of Stall Inception in Centrifugal Compressor Vaned Diffuser1
,”
ASME J. Turbomach.
,
135
(
1
), p.
011025
.
22.
Bousquet
,
Y.
,
Binder
,
N.
,
Dufour
,
G.
,
Carbonneau
,
X.
,
Trebinjac
,
I.
, and
Roumeas
,
M.
,
2016
, “
Numerical Investigation of Kelvin–Helmholtz Instability in a Centrifugal Compressor Operating Near Stall
,”
ASME J. Turbomach.
,
138
(
7
), p.
071007
.
23.
Bousquet
,
Y.
,
Binder
,
N.
,
Dufour
,
G.
,
Carbonneau
,
X.
,
Roumeas
,
M.
, and
Trebinjac
,
I.
,
2016
, “
Numerical Simulation of Stall Inception Mechanisms in a Centrifugal Compressor With Vaned Diffuser
,”
ASME J. Turbomach.
,
138
(
12
), p.
121005
.
24.
Grondin
,
J.
,
Trébinjac
,
I.
, and
Rochuon
,
N.
,
2018
, “
Rotating Instabilities Versus Rotating Stall in a High-Speed Centrifugal Compressor
,”
Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Volume 2B: Turbomachinery
,
Oslo, Norway
,
June 11–15
,
ASME
, p.
V02BT44A025
.
25.
Kowshik
,
C. K. P.
,
Tsugita
,
D.
,
Takeyama
,
Y.
, and
Ohta
,
Y.
,
2012
, “
Rotating Instability in a Centrifugal Blower With Shrouded Impeller
,”
Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Volume 3: Cycle Innovations; Education; Electric Power; Fans and Blowers; Industrial and Cogeneration
,
Copenhagen, Denmark
,
June 11–15
,
ASME
, pp.
685
694
.
26.
Toyama
,
K.
,
Runstadler
,
P. W.
, and
Dean
,
R. C.
,
1977
, “
An Experimental Study of Surge in Centrifugal Compressors
,”
ASME J. Fluids Eng.
,
99
(
1
), pp.
115
131
.
27.
Zheng
,
X.
,
Sun
,
Z.
,
Kawakubo
,
T.
, and
Tamaki
,
H.
,
2017
, “
Experimental Investigation of Surge and Stall in a Turbocharger Centrifugal Compressor With a Vaned Diffuser
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
493
506
.
28.
Lou
,
F.
,
Fabian
,
J. C.
, and
Key
,
N. L.
,
2017
, “
Stall Inception in a High-Speed Centrifugal Compressor During Speed Transients
,”
ASME J. Turbomach.
,
139
(
12
), p.
121004
.
29.
Zheng
,
X.
, and
Liu
,
A.
,
2015
, “
Phenomenon and Mechanism of Two-Regime-Surge in a Centrifugal Compressor
,”
ASME J. Turbomach.
,
137
(
8
), p.
081007
.
30.
Zheng
,
X.
, and
Liu
,
A.
, “
Experimental Investigation of Surge and Stall in a High-Speed Centrifugal Compressor
,”
J. Propul. Power
,
31
(
3
), pp.
815
825
.
31.
Senoo
,
Y.
,
Hayami
,
H.
,
Kinoshita
,
Y.
, and
Yamasaki
,
H.
,
1979
, “
Experimental Study on Flow in a Supersonic Centrifugal Impeller
,”
ASMEJ. Eng. Power
,
101
(
1
), pp.
32
39
.
32.
Aretakis
,
N.
,
Mathioudakis
,
K.
,
Kefalakis
,
M.
, and
Papailiou
,
K.
,
2003
, “
Turbocharger Unstable Operation Diagnosis Using Vibroacoustic Measurements
,”
Proceedings of the ASME Turbo Expo 2003, Collocated with the 2003 International Joint Power Generation Conference. Volume 1: Turbo Expo 2003
,
Atlanta, GA
,
June 16–19
,
ASME
, pp.
361
369
.
33.
Xue
,
X.
, and
Wang
,
T.
,
2019
, “
Stall Recognition for Centrifugal Compressors During Speed Transients
,”
Appl. Therm. Eng.
,
153
, pp.
104
112
.
34.
Tamaki
,
H.
,
Zheng
,
X.
, and
Zhang
,
Y.
,
2013
, “
Experimental Investigation of High Pressure Ratio Centrifugal Compressor With Axisymmetric and Nonaxisymmetric Recirculation Device
,”
ASME J. Turbomach.
,
135
(
3
), p.
031023
.
35.
Stein
,
A.
,
2000
, “
Computational Analysis of Stall and Separation Control in Centrifugal Compressors
,”
Ph.D. dissertation
,
Georgia Institute of Technology
,
Atlanta, GA
.
36.
Zhao
,
B.
,
Hu
,
L.
,
Zhao
,
Q.
, and
Zhou
,
X.
,
2020
, “
Investigation of Variable Orifice Plate Design for Centrifugal Compressor Low-End Performance Improvement
,”
Aerosp. Sci. Technol.
,
97
, p.
105585
.
37.
Galloway
,
L.
,
Rusch
,
D.
,
Spence
,
S.
,
Vogel
,
K.
,
Hunziker
,
R.
, and
Kim
,
S. I.
,
2018
, “
An Investigation of Centrifugal Compressor Stability Enhancement Using a Novel Vaned Diffuser Recirculation Technique
,”
ASME J. Turbomach.
,
140
(
12
), p.
121009
.
38.
Zhang
,
H.
,
Yang
,
C.
,
Yang
,
C.
,
Zhang
,
H.
, and
Chen
,
J.
,
2019
, “
Inlet Bent Torsional Pipe Effect on the Performance and Stability of a Centrifugal Compressor With Volute
,”
Aerosp. Sci. Technol.
,
93
, p.
105322
.
39.
Cameron
,
J. D.
, and
Morris
,
S. C.
,
2007
, “
Spatial Correlation Based Stall Inception Analysis
,”
Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea, and Air. Volume 6: Turbo Expo 2007, Parts A and B
,
Montreal, Canada
,
May 14–17
,
ASME
, pp.
433
444
.
40.
Dhingra
,
M.
,
Neumeier
,
Y.
,
Prasad
,
J. V. R.
,
Breeze-Stringfellow
,
A.
,
Shin
,
H.
, and
Szucs
,
P. N.
,
2006
, “
A Stochastic Model for a Compressor Stability Measure
,”
ASME J. Eng. Gas Turbines Power
,
129
(
3
), pp.
730
737
.
41.
Christensen
,
D.
,
Cantin
,
P.
,
Gutz
,
D.
,
Szucs
,
P. N.
,
Wadia
,
A. R.
,
Armor
,
J.
,
Dhingra
,
M.
,
Neumeier
,
Y.
, and
Prasad
,
J. V. R.
,
2008
, “
Development and Demonstration of a Stability Management System for Gas Turbine Engines
,”
ASME J. Turbomach.
,
130
(
3
), p.
031011
.
42.
Young
,
A.
,
Day
,
I.
, and
Pullan
,
G.
,
2012
, “
Stall Warning by Blade Pressure Signature Analysis
,”
ASME J. Turbomach.
,
135
(
1
), p.
011033
.
43.
Eck
,
M.
,
Rückert
,
R.
,
Peitsch
,
D.
, and
Lehmann
,
M.
,
2020
, “
Prestall Instability in Axial Flow Compressors
,”
ASME J. Turbomach.
,
142
(
7
), p.
071009
.
44.
Wang
,
X.
,
Hu
,
J.
,
Guo
,
J.
,
Jiang
,
C.
, and
Wang
,
Z.
,
2021
, “
Prestall Disturbances and Stall Inception for an Eccentric Low-Speed Axial Compressor With Inlet Swirl
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061021
.
45.
Zhang
,
H.
,
Yang
,
C.
,
Yang
,
D.
,
Wang
,
W.
,
Yang
,
C.
, and
Qi
,
M.
,
2018
, “
Investigation on the Stall Inception Circumferential Position and Stall Process Behavior in a Centrifugal Compressor With Volute
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021030
.
You do not currently have access to this content.