Abstract

In turbomachines, rotors and stators differ by the rotation of the former. Hence, half of each stage is directly influenced by rotation effects. The influence of rotation on the flow structure and its impact on the performance is studied through wall-resolving large Eddy simulations of a rotor with large relative tip gap size. The simulations are performed in a rotating frame with rotation accounted for through a Coriolis force term. In a first step, experimental results are used to provide validation. The main part of the study is the comparison of the results from two simulations, one representing the rotating configuration and one with the Coriolis force removed, without any other change. This setup allows a very clean assessment of the influence of rotation. The turbulence-resolving approach ensures that the turbulent flow features are well represented. The results show a significant impact of rotation on the secondary flow. In the tip region, the tip leakage vortex is enlarged and destabilized. Inside the tip gap, the flow is altered as well, with uniformization in the rotating case. At the blade midspan, no significant effects are observed on the suction side, while an earlier transition to turbulence is found on the pressure side. Near the hub, rotation effects are shown to reduce the corner separation significantly.

References

1.
Hirsch
,
C.
,
1993
, Advanced Methods for Cascade Testing. No. AGARD-AG-328, AGARD, Essex.
2.
Peacock
,
R. E.
,
1982
, “
A Review of Turbomachinery Tip Gap Effects: Part 1: Cascades
,”
Inter. J. Heat Fluid Flow
,
3
(
4
), pp.
185
193
.
3.
Peacock
,
R. E.
,
1983
, “
A Review of Turbomachinery Tip Gap Effects: Part 2: Rotating Machinery
,”
Inter. J. Heat Fluid Flow
,
4
(
1
), pp.
3
16
.
4.
Wang
,
Y.
, and
Devenport
,
W. J.
,
2004
, “
Wake of a Compressor Cascade With Tip Gap, Part 2: Effects of Endwall Motion
,”
AIAA. J.
,
42
(
11
), pp.
2332
2340
.
5.
You
,
D.
,
Wang
,
M.
,
Moin
,
P.
, and
Mittal
,
R.
,
2007
, “
Large-Eddy Simulation Analysis of Mechanisms for Viscous Losses in a Turbomachinery Tip-Clearance Flow
,”
J. Fluid. Mech.
,
586
, pp.
177
204
.
6.
El-Batsh
,
H. M.
, and
Bassily Hanna
,
M.
,
2011
, “
An Investigation on the Effect of Endwall Movement on the Tip Clearance Loss Using Annular Turbine Cascade
,”
Inter. J. Rotating Mach.
,
2011
, pp.
1
11
.
7.
Ventosa-Molina
,
J.
,
Lange
,
M.
,
Mailach
,
R.
, and
Fróhlich
,
J.
,
2021
, “
Study of Relative Endwall Motion Effects in a Compressor Cascade Through Direct Numerical Simulations
,”
ASME J. Turbomach.
,
143
(
1
), p. 011005.
8.
Johnston
,
J. P.
,
Halleent
,
R. M.
, and
Lezius
,
D. K.
,
1972
, “
Effects of Spanwise Rotation on the Structure of Two-Dimensional Fully Developed Turbulent Channel Flow
,”
J. Fluid. Mech.
,
56
(
03
), p.
533
.
9.
Launder
,
B. E.
,
Tselepidakis
,
D. P.
, and
Younis
,
B. A.
,
1987
, “
A Second-Moment Closure Study of Rotating Channel Flow
,”
J. Fluid. Mech.
,
183
, pp.
63
75
.
10.
Westphal
,
W. R.
, and
Godwin
,
W. R.
,
1957
, “
Comparison of NACA 65-Series Compressor-Blade Pressure Distributions and Performance in a Rotor and in Cascade
,” Technical Report, Report No. NACA-TN-3806.
11.
Muesmann
,
G.
,
1958
, “
Zusammenhang Der Strömungseigenschaften Des Laufrades Eines Axialgebläses Mit Denen Eines Einzelflüels
,”
Z. Flugwissenschaften
,
6
(
12
), pp.
345
362
.
12.
Scholz
,
N.
,
1965
,
Aerodynamik Der Schaufelgitter -Bd. 1, Grundlagen, Zweidimensionale Theorie, Anwendungen
,
Braun
,
Karlsruhe
.
13.
Amecke
,
J.
, and
Kost
,
F.
,
1993
, “
Rotating Annular Cascades
,” Advanced Methods for Cascade Testing, C. Hirsch, ed., AGARD-AG-328, pp.
85
95
.
14.
Paulon
,
J.
,
Reboux
,
J.
, and
Sovrano
,
R.
,
1975
, “
Comparison of Test Results Obtained on Plane and Annular, Fixed or Rotating Supersonic Blade Cascades
,”
J. Eng. Power
,
97
(
2
), pp.
245
253
.
15.
Baum
,
O.
,
Koschichow
,
D.
, and
Fröhlich
,
J.
,
2016
, “
Influence of the Coriolis Force on the Flow in a Low Pressure Turbine Cascade T106
,”
Proceedings of the ASME Turbo Expo
, Paper No. GT2016-57399.
16.
Barraza
,
B.
,
Alvidrez
,
D.
, and
Gross
,
A.
,
2020
, “
Numerical Investigation of Flow Through a Small Turbine Cascade With Rotational Effects
,”
AIAA Aviation 2020 Forum
,
Virtual Event
,
June 15–19
, American Institute of Aeronautics and Astronautics, pp.
1
13
.
17.
Boos
,
P.
,
Möckel
,
H.
,
Henne
,
J. M.
, and
Selmeier
,
R.
,
1998
, “
Flow Measurement in a Multistage Large Scale Low Speed Axial Flow Research Compressor
,”
ASME International Gas Turbine and Aeroengine Congress and Exhibition
,
Stockholm, Sweden
,
June 2–5
, Paper No. 98-GT-432.
18.
Künzelmann
,
M.
,
Mailach
,
R.
,
Müller
,
R.
, and
Vogeler
,
K.
,
2008
, “
Steady and Unsteady Flow Field in a Multistage Low-Speed Axial Compressor: A Test Case
,”
Proceedings of ASME Turbo Expo
, Paper No. GT2008-50793.
19.
Hinze
,
J. O.
,
1959
,
Turbulence/an Introduction to Its Mechanism and Theory
(
McGraw-Hill Series in Mechanical Engineering
),
McGraw-Hill
,
New York
.
20.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
, pp.
183
200
.
21.
Vavra
,
M.
,
1960
,
Aero Thermodynamics and Flow in Turbomachines
,
John Wiley & Sons
,
New York
.
22.
Greenspan
,
H.
,
1968
,
The Theory of Rotating Fluids
,
Cambridge University Press
,
Cambridge, UK
.
23.
Hinterberger
,
C.
,
Fröhlich
,
J.
, and
Rodi
,
W.
,
2008
, “
2D and 3D Turbulent Fluctuations in Open Channel Flow With Re Tau = 590 Studied by Large Eddy Simulation
,”
Flow, Turbul. Combust.
,
80
(
2
), pp.
225
253
.
24.
Wissink
,
J.
, and
Rodi
,
W.
,
2008
, “
Numerical Study of the Near Wake of a Circular Cylinder
,”
Inter. J. Heat Fluid Flow
,
29
(
4
), pp.
1060
1070
.
25.
Wang
,
P.
,
Fröhlich
,
J.
,
Michelassi
,
V.
, and
Rodi
,
W.
,
2008
, “
Large Eddy Simulation of Variable Density Turbulent Axisymmetric Jets
,”
Int. J. Heat Fluid Flow
,
29
(
3
), pp.
654
664
.
26.
Koschichow
,
D.
,
Fröhlich
,
J.
,
Kirik
,
I.
, and
Niehuis
,
R.
,
2014
, “
DNS of the Flow Near the Endwall in a Linear Low Pressure Turbine Cascade With Periodically Passing Wakes
,”
Proceedings of the ASME Turbo Expo
, Paper No. GT2014-25071.
27.
Koschichow
,
D.
,
Fröhlich
,
J.
,
Ciorciari
,
R.
, and
Niehuis
,
R.
,
2015
, “
Analysis of the Influence of Periodic Passing Wakes on the Secondary Flow Near the Endwall of a Linear LPT Cascade Using DNS and U-RANS
,”
ETC11, Proceedings of 11th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics
,
Madrid, Spain
,
Mar. 23–27
, pp.
1
13
.
28.
Ventosa-Molina
,
J.
,
Koppe
,
B.
,
Lange
,
M.
,
Mailach
,
R.
, and
Fröhlich
,
J.
,
2021
, “
Effects of Rotation on the Flow Structure in a Compressor Cascade
,”
Proceedings of the ASME Turbo Expo, American Society of Mechanical Engineers
, Paper No. GT2021-58793.
29.
Pierce
,
C. D.
,
2001
, “
Progress-Variable Apporach for Large-Eddy Simulation of Turbulent Combustion
,” Ph.D. thesis,
Stanford University
,
Stanford, CA
.
30.
Lakshminarayana
,
B.
,
1996
,
Fluid Dynamics and Heat Transfer of Turbomachinery
,
Wiley Interscience
,
New York
.
31.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid. Mech.
,
285
(
1
), pp.
69
94
.
32.
Decaix
,
J.
,
Balarac
,
G.
,
Dreyer
,
M.
,
Farhat
,
M.
, and
Münch
,
C.
,
2015
, “
RANS and LES Computations of the Tip-Leakage Vortex for Different Gap Widths
,”
J. Turbul.
,
16
(
4
), pp.
309
341
.
You do not currently have access to this content.