Abstract

This paper introduces the Bayesian mass average and details its computation. Owing to the complexity of flow in an engine and the limited instrumentation and the precision of the sensor apparatus used, it is difficult to rigorously calculate mass averages. Building upon related work, this paper views any thermodynamic quantity’s spatial variation at an axial plane in an engine (or a rig) as a Gaussian random field. In cases where the mass flowrate is constant in the circumferential direction but can be expressed via a polynomial or spline radially, this paper presents an analytical calculation of the Bayesian mass average. In cases where the mass flowrate itself can be expressed as a Gaussian random field, a sampling procedure is presented to calculate the Bayesian mass average. Examples of the calculation of the Bayesian mass average for temperature are presented, including with a real engine case study where velocity profiles are inferred from stagnation pressure measurements.

References

1.
Livesey
,
J. L.
, and
Hugh
,
T.
,
1966
, “
Suitable Mean Values in One-Dimensional Gas Dynamics
,”
ASME J. Mech. Eng. Sci.
,
8
(
4
), pp.
374
383
.
2.
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Graf
,
M. B.
,
2004
,
Internal Flow: Concepts and Applications
. Cambridge Engine Technology Series.
Cambridge University Press
.
3.
Cumpsty
,
N. A.
, and
Horlock
,
J. H.
,
2006
, “
Averaging Nonuniform Flow for a Purpose
,”
ASME J. Turbomach.
,
128
(
1
), pp.
120
129
.
4.
Pianko
,
M.
, and
Wazelt
,
F.
,
1983
,
Suitable Averaging Techniques in Non-Uniform Internal Flows
. Technical Report, AGARD-AR-182.
5.
SAE International
,
2017
. “
Inlet Total-Pressure-Distortion Considerations for Gas-Turbine Engines
.”
Aerospace Information Report
, AIR1419(C).
6.
Skiles
,
T. W.
,
1980
,
Turbine Engine Flowpath Averaging Techniques
. Technical Report, Arnold Air Force Station, TX.
7.
Seshadri
,
P.
,
Simpson
,
D.
,
Thorne
,
G.
,
Duncan
,
A.
, and
Parks
,
G.
,
2020
, “
Spatial Flow-Field Approximation Using Few Thermodynamic Measurements—Part I: Formulation and Area Averaging
,”
ASME J. Turbomach.
,
142
(
2
), p.
021006
.
8.
Seshadri
,
P.
,
Duncan
,
A.
,
Thorne
,
G.
,
Parks
,
G.
,
Vazquez
,
R.
, and
Girolami
,
M.
,
2020
, “
Bayesian Assessments of Aeroengine Performance With Transfer Learning
.” Preprint arXiv:2011.14698.
9.
Seshadri
,
P.
,
Duncan
,
A.
,
Simpson
,
D.
,
Thorne
,
G.
, and
Parks
,
G.
,
2020
, “
Spatial Flow-Field Approximation Using Few Thermodynamic Measurements—Part II: Uncertainty Assessments
,”
J. Turbomach.
,
142
(
2
), pp.
1
8
.
10.
Lou
,
F.
, and
Key
,
N. L.
,
2021
, “
Reconstructing Compressor Non-Uniform Circumferential Flow Field From Spatially Undersampled Data-Part 1: Methodology and Sensitivity Analysis
,”
ASME J. Turbomach.
,
143
(
8
), p.
081002
.
11.
Lou
,
F.
,
Matthews
,
D. R.
,
Kormanik
,
N. J.
, and
Key
,
N. L.
,
2020
, “
Reconstructing Compressor Non-Uniform Circumferential Flow Field From Spatially Undersampled Data: Part 2—Practical Application for Experiments
.” Vol. Volume
2A
:
Turbomachinery of Turbo Expo: Power for Land, Sea, and Air
.
V02AT32A052
.
12.
Chilla
,
M.
,
Pullan
,
G.
, and
Gallimore
,
S.
,
2020
, “
Reducing Instrumentation Errors Caused by Circumferential Flow-Field Variations in Multistage Axial Compressors
,”
ASME J. Turbomach.
,
142
(
9
), p.
091006
.
13.
Piironen
,
J.
, and
Vehtari
,
A.
,
2017
, “
Sparsity Information and Regularization in the Horseshoe and Other Shrinkage Priors
,”
Electronic J. Statist.
,
11
(
2
), pp.
5018
5051
.
14.
Gelman
,
A.
,
Carlin
,
J. B.
,
Stern
,
H. S.
,
Dunson
,
D. B.
,
Vehtari
,
A.
, and
Rubin
,
D. B.
,
2013
,
Bayesian Data Analysis
,
CRC Press
,
Boca Raton, FL
.
15.
Kruschke
,
J.
,
2014
,
Doing Bayesian Data Analysis: A Tutorial With R, JAGS, and Stan
,
Academic Press
,
London, UK
.
16.
Rasmussen
,
C. E.
, and
Williams
,
C. K.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
.
17.
Kuss
,
M
,
2006
, “
Gaussian Process Models for Robust Regression, Classification, and Reinforcement Learning
,” Ph.D. thesis,
echnische Universität Darmstadt Darmstadt
,
Germany
.
18.
Salvatier
,
J.
,
Wiecki
,
T. V.
, and
Fonnesbeck
,
C.
,
2016
, “
Probabilistic Programming in Python Using pymc3
,”
PeerJ Comput. Sci.
,
2
, pp.
e55
.
You do not currently have access to this content.