Abstract

The analysis of the interaction between the swirling and cooling flows, promoted by the liner film cooling system, is a fundamental task for the design of turbine combustion chambers since it influences different aspects such as emissions and cooling capability. In particular, high turbulence values, flow instabilities, and tangential velocity components induced by the swirling flow deeply affect the behavior of effusion cooling jets, demanding for dedicated time-resolved near-wall experimental analysis. The experimental setup of this work consists of a non-reactive single sector linear combustor test rig scaled up with respect to engine dimensions; the test section was equipped with an effusion plate with standard inclined cylindrical holes to simulate the liner cooling system. The rig was instrumented with a 2D time-resolved particle image velocimetry system, focused on different field of views. The degree of swirl for a swirling flow is usually characterized by the swirl number, Sn, defined as the ratio of the tangential momentum flux to axial momentum flux. To assess the impact of such parameter on the near-wall effusion behavior, a set of three different axial swirlers with swirl number equal to Sn = 0.6–0.8–1.0 were designed and tested in the experimental apparatus. An analysis of the main flow field by varying the Sn was first performed in terms of average velocity, root mean square, and Tu values, providing kinetic energy spectra and turbulence length scale information. In a second step, the analysis was focused on the near-wall regions: the strong effects of Sn on the coolant jets were quantified in terms of vorticity analysis and jet oscillation.

References

1.
Gustafsson
,
K. M. B.
,
2001
,
Experimental Studies of Effusion Cooling
,
Chalmers University of technology, Department of Thermo and Fluid Dynamics
,
Goteborg, Sweden
.
2.
Thole
,
K.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Flowfield Measurements for Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
2
), pp.
327
336
.
3.
Scrittore
,
J. J.
,
Thole
,
K. A.
, and
Burd
,
S. W.
,
2006
, “
Investigation of Velocity Profiles for Effusion Cooling of a Combustor Liner
,”
ASME J. Turbomach.
,
129
(
3
), pp.
518
526
.
4.
Fernandes
,
P.
,
Hodges
,
J.
,
Fernandez
,
E.
, and
Kapat
,
J. S.
,
2018
, “
Flow Statistics and Visualization of Multi-Row Film Cooling Boundary Layers Emanating From Cylindrical and Diffuser Shaped Holes
,”
ASME J. Turbomach.
,
141
(
6
), p.
061005
.
5.
Syred
,
N.
, and
Beér
,
J. M.
,
1974
, “
Combustion in Swirling Flows: A Review
,”
Combust. Flame
,
23
(
2
), pp.
143
201
.
6.
Thambu
,
R.
,
Babinchak
,
B. T.
,
Ligrani
,
P. M.
,
Hedlund
,
C. R.
,
Moon
,
H.-K.
, and
Glezer
,
B.
,
1999
, “
Flow in a Simple Swirl Chamber With and Without Controlled Inlet Forcing
,”
Exp. Fluids
,
26
(
4
), pp.
347
357
.
7.
Lucca-Negro
,
O.
, and
O’Doherty
,
T.
,
2001
, “
Vortex Breakdown: A Review
,”
Prog. Energy Combust. Sci.
,
27
(
4
), pp.
431
481
.
8.
Hedlung
,
C. R.
,
Ligrani
,
P. M.
,
Moon
,
H.-K.
, and
Glezer
,
B.
,
1999
, “
Heat Transfer and Flow Phenomena in a Swirl Chamber Simulating Turbine Blade Internal Cooling
,”
ASME J. Turbomach.
,
121
(
4
), pp.
804
813
.
9.
Hedlund
,
C. R.
,
Ligrani
,
P. M.
,
Glezer
,
B.
, and
Moon
,
H.-K.
,
1999
, “
Heat Transfer in a Swirl Chamber at Different Temperature Ratios and Reynolds Numbers
,”
Int. J. Heat Mass Transfer
,
42
(
22
), pp.
4081
4091
.
10.
Hedlund
,
C. R.
, and
Ligrani
,
P. M.
,
1999
, “
Local Swirl Chamber Heat Transfer and Flow Structure at Different Reynolds Numbers
,”
ASME J. Turbomach.
,
122
(
2
), pp.
375
385
.
11.
Wurm
,
B.
,
Schulz
,
A.
,
Bauer
,
H.
, and
Gerendas
,
M.
,
2012
, “
Impact of Swirl Flow on the Cooling Performance of an Effusion Cooled Combustor Liner
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
121503
.
12.
Andreini
,
A.
,
Becchi
,
R.
,
Facchini
,
B.
,
Mazzei
,
L.
,
Picchi
,
A.
, and
Turrini
,
F.
,
2015
, “
Adiabatic Effectiveness and Flow Field Measurements in a Realistic Effusion Cooled Lean Burn Combustor
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
031506
.
13.
Fric
,
T. F.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.
14.
Eberly
,
M. K.
, and
Thole
,
K. A.
,
2013
, “
Time-Resolved Film-Cooling Flows at High and Low Density Ratios
,”
ASME J. Turbomach.
,
136
(
6
), p.
061003
.
15.
Abram
,
C.
,
Schreivogel
,
P.
,
Fond
,
B.
,
Straubald
,
M.
,
Pfitzner
,
M.
, and
Beyrau
,
F.
,
2016
, “
Investigation of Film Cooling Flows Using Thermographic Particle Image Velocimetry at a 6 kHz Repetition Rate
,”
18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics
,
Lisbon, Portugal
,
July
.
16.
Straubald
,
M.
,
Schmid
,
K.
,
Hagen
,
M.
, and
Pfitzner
,
M.
,
2017
, “
Experimental and Numerical Investigation of Turbulent Mixing in Film Cooling Applications
,”
Proc. ASME Turbo Expo
, Paper No. GT2017-64650.
17.
Lenzi
,
T.
,
Palanti
,
L.
,
Picchi
,
A.
,
Bacci
,
T.
,
Mazzei
,
L.
,
Andreini
,
A.
, and
Facchini
,
B.
,
2020
, “
Time-Resolved Flow Field Analysis of Effusion Cooling System With Representative Swirling Main Flow
,”
ASME J. Turbomach.
,
142
(
6
), p.
061008
.
18.
Lenzi
,
T.
,
Picchi
,
A.
,
Bacci
,
T.
,
Andreini
,
A.
, and
Facchini
,
B.
,
2020
, “
Unsteady Flow Field Characterization of Effusion Cooling Systems With Swirling Main Flow: Comparison Between Cylindrical and Shaped Holes
,”
Energies
,
13
(
19
), p.
4993
.
19.
Kahler
,
C.
,
Sammler
,
B.
, and
Kompenhas
,
J.
,
2002
, “
Generation and Control of Tracer Particles for Optical Flow Investigations in Air
,”
Exp. Fluids
,
33
(
6
), pp.
736
742
.
20.
Raffel
,
M.
,
Willert
,
C. E.
, and
Kompenhans
,
J.
,
1997
,
Particle Image Velocimetry—A Pratical Guide
,
Springer
,
Cham, Switzerland
.
21.
Westerweel
,
F.
, and
Scarano
,
J.
,
2005
, “
Universal Outlier Detection for PIV Data
,”
Exp. Fluids
,
39
(
6
), pp.
1096
1100
.
22.
Charonko
,
J.
, and
Vlachos
,
P.
,
2013
, “
Estimation of Uncertainty Bounds for Individual Particle Image Velocimetry Measurements From Cross-Correlation Peak Ratio
,”
Meas. Sci. Technol.
,
24
(
6
), p.
065301
.
23.
Wieneke
,
B.
,
2015
, “
PIV Uncertainty Quantification From Correlation Statistics
,”
Meas. Sci. Technol.
,
26
(
7
), p.
074002
.
24.
Persoons
,
T.
,
2015
, “
Time-Resolved High-Dynamic-Range Particle Image Velocimetry Using Local Uncertainty Estimation
,”
AIAA J.
,
53
(
8
), pp.
2164
2173
.
25.
Canepa
,
E.
,
Di Martino
,
P.
,
Formosa
,
P.
,
Ubaldi
,
M.
, and
Zunino
,
P.
,
2008
, “
Unsteady Aerodynamics of an Aeroengine Double Swirler Lean Premixing Prevaporizing Burner
,”
ASME J. Eng. Gas Turbines Power
,
128
(
1
), pp.
29
39
.
26.
Lewalle
,
J.
, and
Ashpis
,
D.
,
2004
,
Estimation of Time Scales in Unsteady Flows in a Turbomachinery Rig, NASA, Technical Memorandum
.
27.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge
.
28.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
93
161
.
29.
Syred
,
N.
,
Wong
,
C. Y.
,
Rodriquez-Martinez
,
V.
,
Dawson
,
J.
, and
Kelso
,
R.
,
2004
, “
Characterisation of the Occurrence of the Precessing Vortex Core in Partially Premixed and Non-premixed Swirling Flow
,”
Cardiff University
,
Cardiff
,
Technical Memorandum
.
You do not currently have access to this content.