Abstract

The development and verification of new turbulence models for Reynolds-averaged Navier–Stokes (RANS) equation-based numerical methods require reliable experimental data with a deep understanding of the underlying turbulence mechanisms. High accurate turbulence measurements are normally limited to simplified test cases under optimal experimental conditions. This work presents comprehensive three-dimensional data of turbulent flow quantities, comparing advanced constant temperature anemometry (CTA) and stereoscopic particle image velocimetry (PIV) methods under realistic test conditions. The experiments are conducted downstream of a linear, low-pressure turbine cascade at engine relevant high-speed operating conditions. The special combination of high subsonic Mach and low Reynolds number results in a low density test environment, challenging for all applied measurement techniques. Detailed discussions about influences affecting the measured result for each specific measuring technique are given. The presented time mean fields as well as total turbulence data demonstrate with an average deviation of ΔTu<0.4% and ΔC/Cref<0.9% an extraordinary good agreement between the results from the triple sensor hot-wire probe and the 2D3C-PIV setup. Most differences between PIV and CTA can be explained by the finite probe size and individual geometry.

References

1.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
. 10.1115/1.2929299
2.
Langston
,
L. S.
,
2001
, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
11
26
. 10.1111/j.1749-6632.2001.tb05839.x
3.
Pichler
,
R.
,
Zhao
,
Y.
,
Sandberg
,
R. D.
,
Michelassi
,
V.
,
Pacciani
,
R.
,
Marconcini
,
M.
, and
Arnone
,
A.
,
2018
, “
LES and RANS Analysis of the End-Wall Flow in a Linear LPT Cascade: Part I: Flow and Secondary Vorticity Fields Under Varying Inlet Condition
,” ASME Paper No. GT2018-76233.
4.
Marconcini
,
M.
,
Pacciani
,
R.
,
Arnone
,
A.
,
Michelassi
,
V.
,
Pichler
,
R.
,
Zhao
,
Y.
, and
Sandberg
,
R.
,
2018
, “
LES and RANS Analysis of the End-Wall Flow in a Linear LPT Cascade With Variable Inlet Conditions: Part II: Loss Generation
,” ASME Paper No. GT2018-76450.
5.
Hultmark
,
M.
,
Vallikivi
,
M.
,
Bailey
,
S. C. C.
, and
Smits
,
A. J.
,
2013
, “
Logarithmic Scaling of Turbulence in Smooth- and Rough-Wall Pipe Flow
,”
J. Fluid Mech.
,
728
, pp.
376
395
. 10.1017/jfm.2013.255
6.
Hutchins
,
N.
,
Nickels
,
T. B.
,
Marusic
,
I.
, and
Chong
,
M. S.
,
2009
, “
Hot-Wire Spatial Resolution Issues in Wall-Bounded Turbulence
,”
J. Fluid Mech.
,
635
, pp.
103
106
. 10.1017/S0022112009007721
7.
Raffel
,
M.
,
Willert
,
C. E.
,
Scarano
,
F.
,
Kähler
,
C. J.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2018
,
Particle Image Velocimetry
,
Springer International Publishing
,
Cham
.
8.
Scharnowski
,
S.
,
Bross
,
M.
, and
Kähler
,
C. J.
,
2018
, “
Estimating Wind Tunnel Turbulence Level by Means of PIV/PTV
,”
Experimentelle Strömungsmechanik
,
Rostock, Germany
,
Sept. 4–6
.
9.
Shirai
,
K.
,
Pfister
,
T.
,
Büttner
,
L.
,
Czarske
,
J.
,
Müller
,
H.
,
Becker
,
S.
,
Lienhart
,
H.
, and
Durst
,
F.
,
2006
, “
Highly Spatially Resolved Velocity Measurements of a Turbulent Channel Flow by a Fiber-Optic Heterodyne Laser-Doppler Velocity-Profile Sensor
,”
Exp. Fluids
,
40
(
3
), pp.
473
481
. 10.1007/s00348-005-0088-3
10.
Schröder
,
A.
,
Schanz
,
D.
,
Geisler
,
R.
,
Novara
,
M.
, and
Willert
,
C.
,
2015
, “
Near-Wall Turbulence Characterization Using 4D-PTV “Shake-The-Box
,”
11th International Symposium on Particle Image Velocimetry
,
Santa Barbara, CA
,
Sept. 14–16
.
11.
Sturm
,
W.
, and
Fottner
,
L.
,
1985
, “
The High Speed Cascade Wind Tunnel of the German Armed Forces University Munich
,”
8th Symposium on Measurement Techniques for Transonic and Supersonic Flow in Cascades and Turbomachines
,
Geneva, Italy
,
Oct. 24–25
.
12.
Kiock
,
R.
,
Laskowski
,
G.
, and
Hoheisel
,
H.
,
1982
, “
Die Erzeugung Hoeherer Turbulenzgrade in Der Messstrecke Des Hochgeschwindigkeits-Gitterwindkanals: Braunschweig, Zur Simulation Turbomaschinenähnlicher Bedingungen
,” DFVLR-Forschungsbericht, DFVLR-FB 82-25.
13.
Narasimha
,
R.
, and
Prasad
,
S. N.
,
1994
, “
Leading Edge Shape for Flat Plate Boundary Layer Studies
,”
Exp. Fluids
,
17
(
5
), pp.
358
360
. 10.1007/BF01874418
14.
Bohn
,
D.
,
1977
, “
Untersuchung Zweier Verschiedener Axialer Überschallverdichterstufen Unter besonderer Berücksichtigung Der Wechselwirkungen Zwischen Lauf- Und Leitrad
,” Thesis,
RWTH Aachen
,
Aachen, Germany (in German)
.
15.
Gomes
,
R.
,
Kurz
,
J.
, and
Niehuis
,
R.
,
2018
, “
Development and Implementation of a Technique for Fast Five-Hole Probe Measurements Downstream of a Linear Cascade
,”
Int. J. Turbomach. Propul. Power
,
3
(
1
), p.
6
. 10.3390/ijtpp3010006
16.
Vinnemeier
,
F.
,
Simon
,
L.
, and
Koschel
,
W.
,
1990
, “
Correction Method for the Head Geometry Influence of a Five-Hole Pressure Probe on the Measurement Results
,”
Technisches Messen
,
57
(
7/8
), pp.
296
303
. 10.1524/teme.1990.57.jg.296
17.
Bruun
,
H. H.
,
1995
,
Hot-Wire Anemometry: Principles and Signal Analysis
, reprinted ed.,
Oxford Science Publications, Oxford University Press
,
Oxford
.
18.
Sigfrids
,
T.
,
2003
, “
Hot Wire and PIV Studies of Transonic Turbulent Wall-Bounded Flows
,” Dissertation,
Royal Institute of Technology
,
Stockholm
.
19.
Rosemann
,
H.
,
1989
, “
Einfluß der Geometrie von Mehrfach-Hitzdrahtsonden auf die Meßergebnisse in turbulenten Strömungen
,” Report, Deutsche Forschungsanstalt für Luft- und Raumfahrt, DLR-FB 89-26, Cologne, Germany (in German).
20.
Wieneke
,
B.
,
2005
, “
Stereo-PIV Using Self-Calibration on Particle Images
,”
Exp. Fluids
,
39
(
2
), pp.
267
280
. 10.1007/s00348-005-0962-z
21.
Nogueira
,
J.
,
Lecuona
,
A.
, and
Rodríguez
,
P. A.
,
1997
, “
Data Validation, False Vectors Correction and Derived Magnitudes Calculation on PIV Data
,”
Meas. Sci. Technol.
,
8
(
12
), pp.
1493
1501
. 10.1088/0957-0233/8/12/012
22.
Wieneke
,
B.
,
2017
, “
PIV Uncertainty Quantification and Beyond
,” Thesis,
TU Delft
,
Delft
.
23.
Boerner
,
M.
,
Bitter
,
M.
, and
Niehuis
,
R.
,
2018
, “
On the Challenge of Five-Hole-Probe Measurements at High Subsonic Mach Numbers in the Wake of Transonic Turbine Cascades
,”
J. Global Power Propul. Soc.
,
2
(
4
), pp.
453
464
. 10.22261/JGPPS.JPRQQM
24.
Brachmanski
,
R.
, and
Niehuis
,
R.
,
2017
, “
Mach Number Distribution and Profile Losses for Low-Pressure Turbine Profiles With High Diffusion Factors
,”
ASME J. Turbomach.
,
139
(
10
), p.
101002
. 10.1115/1.4036436
25.
Stotz
,
S.
,
Guendogdu
,
Y.
, and
Niehuis
,
R.
,
2017
, “
Experimental Investigation of Pressure Side Flow Separation on the T106C Airfoil at High Suction Side Incidence Flow
,”
ASME J. Turbomach.
,
139
(
5
), p.
051007
. 10.1115/1.4035210
26.
Binder
,
A.
, and
Romey
,
R.
,
1983
, “
Secondary Flow Effects and Mixing of the Wake Behind a Turbine Stator
,”
J. Eng. Power
,
105
(
1
), pp.
40
46
. 10.1115/1.3227396
27.
Sieverding
,
C. H.
,
1993
, “Subsonic-Choked (turbine) Cascades,”
Advanced Methods for Cascade Testing
, Vol.
328
,
C.
Hirsch
, ed.,
NATO AGARD
,
Neuilly-sur-Seine, France
, pp.
22
34
.
You do not currently have access to this content.