Recent technological advances in the field of additive manufacturing (AM), particularly with direct metal laser sintering (DMLS), have increased the potential for building gas turbine components with AM. Using the DMLS for turbine components broadens the design space and allows for increasingly small and complex geometries to be fabricated with little increase in time or cost. Challenges arise when attempting to evaluate the advantages of the DMLS for specific applications, particularly because of how little is known regarding the effects of surface roughness. This paper presents pressure drop and heat transfer results of flow through small, as produced channels that have been manufactured using the DMLS in an effort to better understand roughness. Ten different coupons made with the DMLS all having multiple rectangular channels were evaluated in this study. Measurements were collected at various flow conditions and reduced to a friction factor and a Nusselt number. Results showed significant augmentation of these parameters compared to smooth channels, particularly with the friction factor for minichannels with small hydraulic diameters. However, augmentation of Nusselt number did not increase proportionally with the augmentation of the friction factor.

References

1.
Strano
,
G.
,
Hao
,
L.
,
Everson
,
R. M.
, and
Evans
,
K. E.
,
2013
, “
Surface Roughness Analysis, Modelling and Prediction in Selective Laser Melting
,”
J. Mater. Process. Technol.
,
213
(
4
), pp.
589
597
.
2.
Delgado
,
J.
,
Ciurana
,
J.
, and
Rodríguez
,
C. A.
,
2012
, “
Influence of Process Parameters on Part Quality and Mechanical Properties for DMLS and SLM With Iron-Based Materials
,”
Int. J. Adv. Manuf. Technol.
,
60
(
5–8
), pp.
601
610
.
3.
Simonelli
,
M.
,
Tse
,
Y. Y.
, and
Tuck
,
C.
,
2014
, “
Effect of the Build Orientation on the Mechanical Properties and Fracture Modes of SLM Ti–6Al–4V
,”
Mater. Sci. Eng. A
,
616
, pp.
1
11
.
4.
Ventola
,
L.
,
Robotti
,
F.
,
Dialameh
,
M.
,
Calignano
,
F.
,
Manfredi
,
D.
,
Chiavazzo
,
E.
, and
Asinari
,
P.
,
2014
, “
Rough Surfaces With Enhanced Heat Transfer for Electronics Cooling by Direct Metal Laser Sintering
,”
Int. J. Heat Mass Transfer
,
75
, pp.
58
74
.
5.
Cooper
,
D. E.
,
Stanford
,
M.
,
Kibble
,
K. A.
, and
Gibbons
,
G. J.
,
2012
, “
Additive Manufacturing for Product Improvement at Red Bull Technology
,”
Mater. Des.
,
41
, pp.
226
230
.
6.
Calignano
,
F.
,
Manfredi
,
D.
,
Ambrosio
,
E. P.
,
Iuliano
,
L.
, and
Fino
,
P.
,
2013
, “
Influence of Process Parameters on Surface Roughness of Aluminum Parts Produced by DMLS
,”
Int. J. Adv. Manuf. Technol.
,
67
(
9–12
), pp.
2743
2751
.
7.
Roppenecker
,
D. B.
,
Grazek
,
R.
,
Coy
,
J. A.
,
Irlinger
,
F.
, and
Lueth
,
T. C.
,
2013
, “
Friction Coefficients and Surface Properties for Laser Sintered Parts
,”
ASME
Paper No. IMECE2013-64549.
8.
Ning
,
Y.
,
Wong
,
Y. S.
,
Fuh
,
J. Y. H.
, and
Loh
,
H. T.
,
2006
, “
An Approach to Minimize Build Errors in Direct Metal Laser Sintering
,”
IEEE Trans. Autom. Sci. Eng.
,
3
(
1
), pp.
73
80
.
9.
Huang
,
K.
,
Wan
,
J. W.
,
Chen
,
C. X.
,
Li
,
Y. Q.
,
Mao
,
D. F.
, and
Zhang
,
M. Y.
,
2013
, “
Experimental Investigation on Friction Factor in Pipes With Large Roughness
,”
Exp. Therm. Fluid Sci.
,
50
, pp.
147
153
.
10.
Dai
,
B.
,
Li
,
M.
, and
Ma
,
Y.
,
2014
, “
Effect of Surface Roughness on Liquid Friction and Transition Characteristics in Micro- and Mini-Channels
,”
Appl. Therm. Eng.
,
67
(
1–2
), pp.
283
293
.
11.
Jones
,
J. O. C.
,
1976
, “
An Improvement in the Calculation of Turbulent Friction in Rectangular Ducts
,”
ASME J. Fluids Eng.
,
98
(
2
), pp.
173
180
.
12.
Cormier
,
Y.
,
Dupuis
,
P.
,
Farjam
,
A.
,
Corbeil
,
A.
, and
Jodoin
,
B.
,
2014
, “
Additive Manufacturing of Pyramidal Pin Fins: Height and Fin Density Effects Under Forced Convection
,”
Int. J. Heat Mass Transfer
,
75
, pp.
235
244
.
13.
Wong
,
M.
,
Owen
,
I.
,
Sutcliffe
,
C. J.
, and
Puri
,
A.
,
2009
, “
Convective Heat Transfer and Pressure Losses Across Novel Heat Sinks Fabricated by Selective Laser Melting
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
281
288
.
14.
Snyder
,
J. C.
,
Stimpson
,
C. K.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2015
, “
Build Direction Effects on Flow and Heat Transfer for Additively Manufactured Channels
,”
ASME
Paper No. GT2015-43935.
15.
EOS
,
2011
, Basic Training EOSINT M 280, Electro Optical Systems GmbH, Munich, Germany.
16.
Reinhart
,
C.
,
2011
, “
Industrial CT & Precision
,” Volume Graphics GmbH, Heidelberg, Germany.
17.
Weaver
,
S. A.
,
Barringer
,
M. D.
, and
Thole
,
K. A.
,
2011
, “
Microchannels With Manufacturing Roughness Levels
,”
ASME J. Turbomach.
,
133
(
4
), p.
041014
.
18.
EOS
,
2011
, Material Data Sheet: EOS CobaltChrome MP1, Electro Optical Systems GmbH, Munich, Germany.
19.
EOS
,
2014
, Material Data Sheet: EOS NickelAlloy IN718, Electro Optical Systems GmbH, Munich, Germany.
20.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2005
,
Theory and Design for Mechanical Measurements
,
Wiley
,
Hoboken, NJ
.
21.
Munson
,
B. R.
,
Young
,
D. F.
, and
Okiishi
,
T. H.
,
2006
,
Fundamentals of Fluid Mechanics
,
Wiley
,
Hoboken, NJ
.
22.
Langhaar
,
H. L.
,
1942
, “
Steady Flow in the Transition Length of a Straight Tube
,”
ASME J. Appl. Mech.
,
9
, pp.
A55
A58
.
23.
Moody
,
L. F.
,
1944
, “
Friction Factor for Pipe Flow
,”
ASME
,
66
(
8
), pp.
671
684
.
24.
Nikuradse
,
J.
,
1933
, “
Strömungsgesetze in Rauhen Rohren
,”
Forschungsheft
, Vol.
4
(
B
),
VDI-Verlag
,
Berlin
, p.
316
.
25.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
26.
Winterton
,
R. H. S.
,
1998
, “
Where Did the Dittus and Boelter Equation Come From?
,”
Int. J. Heat Mass Transfer
,
41
(
4–5
), pp.
809
810
.
27.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
28.
Norris
,
R. H.
,
1971
, “
Some Simple Approximate Heat Transfer Correlations for Turbulent Flow in Ducts With Surface Roughness
,”
Augmentation of Convection Heat and Mass Transfer
,
American Society of Mechanical Engineers
,
New York
.
29.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Bernhard
,
W.
,
2005
,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
Boston
.
30.
Saha
,
K.
, and
Acharya
,
S.
,
2014
, “
Heat Transfer Enhancement Using Angled Grooves as Turbulence Promoters
,”
ASME J. Turbomach.
,
136
(
8
), p.
081004
.
You do not currently have access to this content.