The main purpose of this numerical investigation is to overcome the limitations of the steady modeling in predicting the cooling efficiency over the cutback surface in a high pressure turbine nozzle guide vane. Since discrepancy between Reynolds-averaged Navier–Stokes (RANS) predictions and measured thermal coverage at the trailing edge was attributable to unsteadiness, Unsteady RANS (URANS) modeling was implemented to evaluate improvements in simulating the mixing between the mainstream and the coolant exiting the cutback slot. With the aim of reducing the computation effort, only a portion of the airfoil along the span was simulated at an exit Mach number of Ma2is = 0.2. Three values of the coolant-to-mainstream mass flow ratio were considered: MFR = 0.66%, 1.05%, and 1.44%. Nevertheless the inherent vortex shedding from the cutback lip was somehow captured by the URANS method, the computed mixing was not enough to reproduce the measured drop in adiabatic effectiveness η along the streamwise direction, over the cutback surface. So modeling was taken a step further by using the scale adaptive simulation (SAS) method at MFR = 1.05%. Results from the SAS approach were found to have potential to mimic the experimental measurements. Vortices shedding from the cutback lip were well predicted in shape and magnitude, but with a lower frequency, as compared to particle image velocimetry (PIV) data and flow visualizations. Moreover, the simulated reduction in film cooling effectiveness toward the trailing edge was similar to that observed experimentally.

References

1.
Ames
,
F. E.
,
Fiala
,
N. J.
, and
Johnson
,
J. D.
,
2007
, “
Gill Slot Trailing Edge Heat Transfer—Effects of Blowing Rate, Reynolds Number and External Turbulence on Heat Transfer and Film Cooling Effectiveness
,”
ASME
Paper No. GT2007-27397. 10.1115/GT2007-27397
2.
Martini
,
P.
,
Schulz
,
A.
, and
Bauer
,
H. J.
,
2005
, “
Film Cooling Effectiveness and Heat Transfer on the Trailing Edge Cutback of Gas Turbine Airfoils With Various Internal Cooling Designs
,”
ASME J. Turbomach.
,
128
(1), pp.
196
205
.10.1115/1.2103094
3.
Horbach
,
T.
,
Schultz
,
A.
, and
Bauer
,
H. J.
,
2010
, “
Trailing Edge Film Cooling of Gas Turbine Airfoils—External Cooling Performance of Various Internal Pin Fin Configurations
,”
ASME J. Turbomach
,
133
(4), p.
041006
.10.1115/1.4002964
4.
Taslim
,
M. E.
,
Spring
,
S. D.
, and
Mehlman
,
B. P.
,
1992
, “
Experimental Investigation of Film Cooling Effectiveness for Slots of Various Exit Geometries
,”
J. Thermophys. Heat Transfer
,
6
(2), pp.
302
307
.10.2514/3.359
5.
Dannhauer
,
A.
,
2009
, “
Investigation of Trailing Edge Cooling Concepts in a High Pressure Turbine Cascade—Analysis of the Adiabatic Film Cooling Effectiveness
,”
ASME
Paper No. GT2009-59343. 10.1115/GT2009-59343
6.
Holloway
,
D. S.
,
Leylek
,
J. H.
, and
Buck
,
F. A.
,
2002
, “
Pressure-Side Bleed Film Cooling: Part I—Steady Framework for Experimental and Computational Results
,”
ASME
Paper No. GT2002-30471. 10.1115/GT2002-30471
7.
Martini
,
P.
,
Schulz
,
A.
,
Whitney
,
C. F.
, and
Lutum
,
E.
,
2003
, “
Experimental and Numerical Investigation of Trailing Edge Film Cooling Downstream of a Slot With Internal Rib Arrays
,”
5th European Conference on Turbomachinery—Fluid Dynamics and Thermodynamics
, Prague, Czech Republic, Mar. 18-21, pp.
487
500
.
8.
Holloway
,
D. S.
,
Leylek
,
J. H.
, and
Buck
,
F. A.
,
2002
, “
Pressure-Side Bleed Film Cooling: Part II—Unsteady Framework for Experimental and Computational Results
,”
ASME
Paper No. GT2002-30472. 10.1115/GT2002-30472
9.
Medic
,
G.
, and
Durbin
,
P. A.
,
2005
, “
Unsteady Effects on Trailing Edge Cooling
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
388
392
.10.1115/1.1860565
10.
Ang
,
D.
,
Chen
,
L.
, and
Tu
,
J.
,
2004
, “
Unsteady RANS Simulation of High Reynolds Number Trailing Edge Flow
,”
15th Australian Fluid Mechanics Conference
, Sydney, Australia, December 13–17.
11.
Martini
,
P.
,
Schulz
,
A.
,
Bauer
,
H. J.
, and
Whitney
,
C. F.
,
2006
, “
Detached Eddy Simulation of Film Cooling Performance on the Trailing Edge Cutback of Gas Turbine Airfoils
,”
ASME J. Turbomach.
,
128
(2), pp.
292
299
. 10.1115/1.2137739
12.
Krueckels
,
J.
,
Gritsch
,
M.
, and
Schnieder
,
M.
,
2009
, “
Design Considerations and Validation of Trailing Edge Pressure Side Bleed Cooling
,”
ASME
Paper No. GT2009-59161. 10.1115/GT2009-59161
13.
Joo
,
J.
, and
Durbin
,
P.
,
2009
, “
Simulation of Turbine Blade Trailing Edge Cooling
,”
ASME J. Fluids Eng.
,
131
(
2
), p.
021102
.10.1115/1.3054287
14.
Egorov
,
Y.
,
Menter
,
F. R.
,
Lechner
,
R.
, and
Cokljat
,
D.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 2: Application to Complex Flows
,”
Flow Turbul. Combust.
,
85
(1), pp.
139
165
.10.1007/s10494-010-9265-4
15.
Schneider
,
H.
,
von Terzi
,
D.
, and
Bauer
,
H.-J.
,
2010
, “
Large-Eddy Simulations of Trailing-Edge Cutback Film Cooling at Low Blowing Ratio
,”
Int. J. Heat Fluid Flow
,
31
(5), pp.
767
775
.10.1016/j.ijheatfluidflow.2010.06.010
16.
Schneider
,
H.
,
von Terzi
,
D.
, and
Bauer
,
H.-J.
,
2012
, “
Turbulent Heat Transfer and Coherent Structures in Trailing-Edge Cutback Film Cooling
,”
Flow Turbul. Combust.
,
88
(1–2), pp.
101
120
.10.1007/s10494-011-9379-3
17.
Benson
,
M.
,
Elkins
,
C.
, and
Eaton
,
J.
,
2011
, “
Measurements of 3D Velocity and Scalar Field for a Film-Cooled Airfoil Trailing Edge
,”
Exp. Fluids
,
51
(2), pp.
443
455
.10.1007/s00348-011-1062-x
18.
Ling
,
J.
,
Sayuri
,
D. Y.
,
Benson
,
M. J.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2013
, “
Three-Dimensional Velocity and Scalar Field Measurements of an Airfoil Trailing Edge With Slot Film Cooling: The Effect of an Internal Structure in the Slot
,”
ASME J. Turbomach.
,
135
(3), p.
031018
.10.1115/1.4007520
19.
Yang
,
Z.
, and
Hu
,
H.
,
2012
, “
An Experimental Investigation on the Trailing Edge Cooling of Turbine Blades
,”
Propulsion Power Res.
,
1
(1), pp.
36
47
.10.1016/j.jppr.2012.10.007
20.
Barigozzi
,
G.
,
Armellini
,
A.
,
Mucignat
,
C.
, and
Casarsa
,
L.
,
2012
, “
Experimental Investigation of the Effects of Blowing Conditions and Mach Number on the Unsteady Behavior of Coolant Ejection Through a Trailing Edge Cutback
,”
Int. J. Heat Fluid Flow
,
37
, pp.
37
50
.10.1016/j.ijheatfluidflow.2012.07.001
21.
Ravelli
,
S.
, and
Barigozzi
,
G.
,
2013
, “
Evaluation of RANS Predictions on a Linear Nozzle Vane Cascade With Trailing Edge Cutback Film Cooling
,”
ASME
Paper No. GT2013-94694. 10.1115/GT2013-94694
22.
Ravelli
,
S.
,
Miranda
,
M.
, and
Barigozzi
,
G.
,
2013
, “
Steady CFD Simulations of Trailing Edge Film Cooling in a Linear Nozzle Vane Cascade
,”
10th European Turbomachinery Conference
, Lappeenranta, Finland, Apr. 15–19, p. B073.
23.
Barigozzi
,
G.
,
Perdichizzi
,
A.
, and
Ravelli
,
S.
,
2012
, “
Pressure Side and Cutback Trailing Edge Film Cooling in a Linear Nozzle Vane Cascade at Different Mach Numbers
,”
ASME J. Turbomach.
,
134
(
5
), p.
051037
.10.1115/1.4004825
24.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(8), pp.
1598
1605
.10.2514/3.12149
25.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part I: Theory and Model Description
,”
Flow Turbul. Combust.
,
85
(1), pp.
113
138
.10.1007/s10494-010-9264-5
26.
Davidson
,
L.
,
2007
, “
The SAS Model: A Turbulence Model With Controlled Modeled Dissipation
,”
20th Nordic Seminar on Computational
Mechanics (NSCM 20), Gothenburg, Sweden, Nov. 23–24.
27.
Menter
,
F. R.
,
2012
, “
Best Practice: Scale-Resolving Simulations in ANSYS CFD
,” Version 1.0, ANSYS Inc., Canonsburg, PA.
28.
ANSYS, 2012, “
ANSYS Fluent User's Guide
,” Release 14.5, ANSYS Inc., Canonsburg, PA.
29.
Ethridge
,
M. I.
,
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
,
2001
, “
Scaling of Performance for Varying Density Ratio Coolants on an Airfoil With Strong Curvature and Pressure Gradient Effects
,”
ASME J. Turbomach.
,
123
(
2
), pp.
231
237
.10.1115/1.1343457
30.
Doddipatla
,
L. S.
,
Hangan
,
H.
,
Durgesh
,
V.
, and
Naughton
,
J. W.
,
2008
, “
Wake Energy Redistribution Due to Trailing Edge Spanwise Perturbation
,”
BBAA VI International Colloquium on Bluff Bodies Aerodynamics & Applications
, Milano, Italy, July, 20–24.
31.
Bernal
,
L. P.
, and
Roshko
,
A.
,
1986
, “
Streamwise Vortex Structure in Plane Mixing Layers
,”
J. Fluid Mech.
,
170
, pp.
499
525
.10.1017/S002211208600099X
32.
Han
,
B.
, and
Goldstein
,
R. J.
,
2003
, “
Instantaneous Energy Separation in a Free Jet. Part I. Flow Measurement and Visualization
,”
Int. J. Heat Mass Transfer
,
46
(21), pp.
3975
3981
.10.1016/S0017-9310(03)00245-X
You do not currently have access to this content.