Demand for clean energy has increased motivation to design gas turbines capable of burning alternative fuels such as coal derived synthesis gas (syngas). One challenge associated with burning coal derived syngas is that trace amounts of particulate matter in the fuel and air can deposit on turbine hardware reducing the effectiveness of film-cooling. For the current study, a method was developed to dynamically simulate multiphase particle deposition through injection of a low melting temperature wax. The method was developed so the effects of deposition on endwall film-cooling could be quantified using a large scale vane cascade in a low speed wind tunnel. A microcrystalline wax was injected into the mainstream flow using atomizing spray nozzles to simulate both solid and molten particulate matter in a turbine gas path. Infrared thermography was used to quantify cooling effectiveness with and without deposition at various locations on a film-cooled endwall. Measured results indicated reductions in adiabatic effectiveness by as much as 30% whereby the reduction was highly dependent on the location of the film-cooling holes relative to the vane.

1.
Lawson
,
S. A.
, and
Thole
,
K. A.
, 2009, “
The Effects of Simulated Particle Deposition on Film Cooling
,”
ASME
Paper No. GT2009-59109.
2.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
, 2007, “
Effects of Mid-Passage Gap, Endwall Misalignment, and Roughness on Endwall Film-Cooling
,”
ASME J. Turbomach.
0889-504X,
129
(
4
), pp.
756
764
.
3.
Sundaram
,
N.
, and
Thole
,
K. A.
, 2007, “
Effects of Surface Deposition, Hole Blockage, and TBC Spallation on Vane Endwall Film-Cooling
,”
ASME J. Turbomach.
0889-504X,
129
(
3
), pp.
599
607
.
4.
Somawardhana
,
R. P.
, and
Bogard
,
D. G.
, 2007, “
Effects of Roughness and Near Hole Obstructions on Film Cooling Effectiveness
,”
ASME
Paper No. GT2007-28004.
5.
Bons
,
J. P.
,
Taylor
,
R. P.
,
McClain
,
S. T.
, and
Rivir
,
R. B.
, 2001, “
The Many Faces of Turbine Surface Roughness
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
739
748
.
6.
Jensen
,
J. W.
,
Squire
,
S. W.
,
Bons
,
J. P.
, and
Fletcher
,
T. H.
, 2005, “
Simulated Land-Based Turbine Deposits Generated in an Accelerated Deposition Facility
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
462
470
.
7.
Bons
,
J. P.
,
Wammack
,
J. E.
,
Crosby
,
J.
,
Fletcher
,
D.
, and
Fletcher
,
T. H.
, 2006, “
Evolution of Surface Deposits on a High Pressure Turbine Blade, Part II: Convective Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
130
(
2
), p.
021021
.
8.
Crosby
,
J. M.
,
Lewis
,
S.
,
Bons
,
J. P.
,
Ai
,
W.
, and
Fletcher
,
T. H.
, 2007, “
Effects of Particle Size, Gas Temperature, and Metal Temperature on High Pressure Turbine Deposition in Land Based Gas Turbines From Various Synfuels
,”
ASME
Paper No. GT2007-27531.
9.
Ai
,
W.
,
Murray
,
N.
,
Fletcher
,
T. H.
,
Harding
,
S.
,
Lewis
,
S.
, and
Bons
,
J. P.
, 2008, “
Deposition Near Film Cooling Holes on a High Pressure Turbine Vane
,”
ASME
Paper No. GT2008-50901.
10.
Lewis
,
S.
,
Baker
,
B.
,
Bons
,
J. P.
,
Ai
,
W.
, and
Fletcher
,
T. H.
, 2009, “
Film Cooling Effectiveness and Heat Transfer Near Deposit-Laden Film Holes
,”
ASME
Paper No. GT2009-59567.
11.
Sreedharan
,
S. S.
, and
Tafti
,
D. K.
, 2009, “
Effect of Blowing Ratio on Syngas Flyash Particle Deposition on a Three-Row Leading Edge Film Cooling Geometry Using Large Eddy Simulations
,”
ASME
Paper No. GT2009-59326.
12.
Albert
,
J. E.
,
Keefe
,
K. J.
, and
Bogard
,
D. G.
, 2009, “
Experimental Simulation of Contaminant Deposition on a Film Cooled Turbine Airfoil Leading Edge
,”
ASME
Paper No. IMECE2009-11582.
13.
Lynch
,
S. P.
,
Sundaram
,
N.
,
Thole
,
K. A.
,
Kohli
,
A.
, and
Lehane
,
C.
, 2009, “
Heat Transfer for a Turbine Blade With Non-Axisymmetric Endwall Contouring
,”
ASME
Paper No. GT2009-60185.
14.
Radomsky
,
R. W.
, and
Thole
,
K. A.
, 2000, “
Flowfield Measurements for a Highly Turbulent Flow in a Stator Vane Passage
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
255
262
.
15.
Thole
,
K. A.
, and
Knost
,
D. G.
, 2005, “
Heat Transfer and Film-Cooling for the Endwall of a First Stage Turbine Vane
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
5255
5269
.
16.
Ethridge
,
M. I.
,
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
, 2001, “
Scaling of Performance for Varying Density Ratio Coolants on an Airfoil With Strong Curvature and Pressure Gradient Effects
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
231
237
.
17.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
18.
Bons
,
J. P.
,
Crosby
,
J.
,
Wammack
,
J. E.
,
Bentley
,
B. I.
, and
Fletcher
,
T. H.
, 2007, “
High Pressure Turbine Deposition in Land-Based Gas Turbines From Various Synfuels
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
135
143
.
19.
Li
,
R.
,
Lei
,
W.
,
Yang
,
T.
, and
Raninger
,
B.
, 2007, “
Investigation of MSWI Fly Ash Melting Characteristic by DSC-DTA
,”
Waste Manage.
0956-053X,
27
, pp.
1383
1392
.
20.
Krishnaiah
,
W.
, and
Singh
,
D. N.
, 2006, “
Determination of Thermal Properties of Some Supplementary Cementing Materials Used in Cement and Concrete
,”
Constr. Build. Mater.
0950-0618,
20
, pp.
193
198
.
21.
Wang
,
Q.
,
Tian
,
S.
,
Wang
,
Q.
,
Huang
,
Q.
, and
Yang
,
J.
, 2008, “
Melting Characteristics During the Vitrification of MSWI Fly Ash With a Pilot-Scale Diesel Oil Furnace
,”
J. Hazard. Mater.
0304-3894,
160
, pp.
376
381
.
22.
Dennis
,
R. A.
,
Shelton
,
W. W.
, and
Le
,
P.
, 2007, “
Development of Baseline Performance Values for Turbines in Existing IGCC Applications
,”
ASME
Paper No. GT2007-28096.
23.
Johnson
,
D.
, 1996, Original Pratt & Whitney contact regarding operating conditions and geometric specifications of PW6000 nozzle guide vane.
24.
IMAGEJ, image processing and analysis in Java, http://rsbweb.nih.gov/ij/http://rsbweb.nih.gov/ij/.
25.
Sundaram
,
N.
, and
Thole
,
K. A.
, 2008, “
Bump and Trench Modifications to Film-Cooling Holes at the Vane-Endwall Junction
,”
ASME J. Turbomach.
0889-504X,
130
(
4
), p.
041013
.
26.
Sundaram
,
N.
, and
Thole
,
K. A.
, 2009, “
Film-Cooling Flowfields With Trenched Holes on an Endwall
,”
ASME J. Turbomach.
0889-504X,
131
, p.
041007
.
You do not currently have access to this content.