This paper establishes a proven computational approach for open rotor configurations that can be used as a basis for further studies involving open rotor aerodynamics and design. Many of the difficulties encountered in the application of computational fluid dynamics to an open rotor engine arise due to the removal of the casing that is present in conventional aero-engine turbomachinery. In this work, an advanced three-dimensional Navier–Stokes solver is applied to the open rotor. The approach needed to accurately capture the aerodynamics is investigated with particular attention to the mesh configuration and the specification of the boundary conditions. A new three-step meshing strategy for generating the mesh and the most suitable type of far-field boundary condition are discussed. A control volume analysis approach is proposed for post-processing the numerical results for the rotor performance. The capabilities of the solver and the applied methodology are demonstrated at both cruise and take-off operating conditions. The comparison of the computational results with the experimental measurements shows good agreement for both data trend and magnitudes.

1.
Hager
,
R. D.
, and
Vrabel
,
D.
, 1988, “
Advanced Turboprop Project
,”
NASA
Report No. SP-495.
2.
Strack
,
W. C.
,
Knip
,
G.
,
Weisbrich
,
A. L.
,
Godston
,
J.
, and
Bradley
,
E.
, 1990, “
Technology and Benefits of Aircraft Counter-Rotation Propellers
,”
NASA
Report No. TM-82983.
3.
Groeneweg
,
J. F.
, and
Bober
,
L. J.
, 1988, “
NASA Advanced Propeller Research
,”
NASA
Report No. TM-101361.
4.
Egolf
,
T. A.
,
Anderson
,
O. L.
,
Edwards
,
D. E.
, and
Landgrebe
,
A. J.
, 1979, “
An Analysis for High Speed Propeller-Nacelle Aerodynamic Performance Prediction: Volume 1, Theory and Initial Applications; Volume 2, User’s Manual for the Computer Program
,”
NASA
Report Nos. CR-169450 and CR-169451.
5.
Lesieutre
,
D. J.
, and
Sullivan
,
J. P.
, 1985, “
The Analysis of Counter-Rotating Propeller Systems
,” SAE Paper No. 850869.
6.
Jou
,
W. H.
, 1983, “
Finite Volume Calculation of Three-Dimensional Potential Flow Around a Propeller
,”
AIAA J.
0001-1452,
21
(
10
), pp.
1360
1364
.
7.
Denton
,
J. D.
, 1980, “
Time Marching Methods for Turbomachinery Flow Calculations
,”
Numerical Methods in Fluid Dynamics
,
B.
Hunt
, ed.,
Academic
,
New York
, pp.
473
493
.
8.
Yamamoto
,
O.
,
Barton
,
J. M.
, and
Bober
,
L. J.
, 1986, “
Improved Euler Analysis of Advanced Turboprop Flows
,” Paper No. AIAA-1986-1521.
9.
Celestina
,
M. L.
,
Mulac
,
R. A.
, and
Adamczyk
,
J. J.
, 1986, “
A Numerical Simulation of the Inviscid Flow Through a Counter-Rotating Propeller
,”
ASME
Paper No. 86-GT-138.
10.
Whitfield
,
D. L.
,
Swafford
,
T. W.
,
Janus
,
J. M.
,
Mulac
,
R. A.
, and
Belk
,
D. M.
, 1987, “
Three-Dimensional Unsteady Euler Solutions for Propfans and Counter-Rotating Propfans in Transonic Flow
,” Paper No. AIAA-1987-1197.
11.
Hall
,
E. J.
, and
Delaney
,
R. A.
, 1993, “
Investigation of Advanced Counterrotation Blade Configuration Concepts for High Speed Turboprop Systems, Task 5, Unsteady Counterrotation Ducted Propfan Analysis
,”
NASA
Report No. CR-187126.
12.
Stuermer
,
A.
, 2008, “
Unsteady CFD Simulations of Contra-Rotating Propeller Propulsion Systems
,” Paper No. AIAA-2008-5218.
13.
Brailko
,
I. A.
,
Mileshin
,
V. I.
,
Nyukhtikov
,
M. A.
,
Pankov
,
S. V.
, and
Rossikhin
,
A. A.
, 2005, “
3D Computational Analysis of Unsteady and Acoustic Characteristics of a Model of High Bypass Ratio Counter-Rotating Fan
,” Paper No. ISABE-2005-1186.
14.
Mileshin
,
V. I.
,
Nyukhtikov
,
M. A.
,
Orekhov
,
I. K.
,
Pankov
,
S. V.
, and
Shchipin
,
S. K.
, 2008, “
Open Counter-Rotation Fan Blades Optimization Based on 3D Inverse Problem Navier–Stokes Solution Method With the Aim of Tonal Noise Reduction
,”
ASME
Paper No. GT2008-51173.
15.
Kirker
,
T. J.
, 1990, “
Procurement and Testing of a 1/5 Scale Advanced Counter Rotating Propfan Model
,” Paper No. AIAA-1990-3975.
16.
Lapworth
,
B. L.
, 2004, “
HYDRA-CFD: A Framework for Collaborative CFD Development
,”
Proceedings of the International Conference on Scientific and Engineering Computation (IC-SEC 2004)
.
17.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
, 1994, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aerosp.
0034-1223,
1
, pp.
5
21
.
18.
Shahpar
,
S.
, and
Lapworth
,
L.
, 2003, “
PADRAM: Parametric Design and Rapid Meshing System for Turbomachinery Optimisation
,”
ASME
Paper No. GT2003-38698.
19.
Srivastava
,
R.
, and
Sankar
,
L. N.
, 1993, “
Efficient Hybrid Scheme for the Analysis of Counter-Rotating Propellers
,”
J. Propul. Power
0748-4658,
9
(
3
), pp.
382
388
.
20.
Wainauski
,
H. S.
,
Rohrbach
,
C.
, and
Wynosky
,
T. A.
, 1987, “
Prop-Fan Performance Terminology
,” SAE Paper No. 871838.
21.
Billman
,
L. C.
,
Ladden
,
R. M.
,
Turnberg
,
J. E.
,
Gruska
,
C. J.
, and
Leishman
,
D. K.
, 1989, “
Large Scale Prop-Fan Structural Design Study
,”
NASA
Report No. CR-174992.
22.
Nallasamy
,
M.
,
Clark
,
B. J.
, and
Groeneweg
,
J. F.
, 1987, “
Euler Analysis of the Three-Dimensional Flow Field of a High-Speed Propeller: Boundary Conditions Effects
,”
ASME J. Turbomach.
0889-504X,
109
, pp.
332
339
.
23.
Rohrbach
,
C.
,
Metzger
,
F. B.
,
Black
,
D. M.
, and
Ladden
,
R. M.
, 1982, “
Evaluation of Wind Tunnel Performance Testings of an Advanced 45° Swept Eight-Bladed Propeller at Mach Numbers From 0.45 to 0.85
,”
NASA
Report No. CR-3505.
You do not currently have access to this content.