An approach to endwall contouring has been developed with the goal of reducing secondary losses in highly loaded axial flow turbines. The present paper describes an experimental assessment of the performance of the contouring approach implemented in a low-speed linear cascade test facility. The study examines the secondary flows of a cascade composed of Pratt & Whitney PAKB airfoils. This airfoil has been used extensively in low-pressure turbine research, and the present work adds intrapassage pressure and velocity measurements to the existing database. The cascade was tested at design incidence and at an inlet Reynolds number of 126,000 based on inlet midspan velocity and axial chord. Quantitative results include seven-hole pneumatic probe pressure measurements downstream of the cascade to assess blade row losses and detailed seven-hole probe measurements within the blade passage to track the progression of flow structures. Qualitative results take the form of oil surface flow visualization on the endwall and blade suction surface. The application of endwall contouring resulted in lower secondary losses and a reduction in secondary kinetic energy associated with pitchwise flow near the endwall and spanwise flow up the suction surface within the blade passage. The mechanism of loss reduction is discussed in regard to the reduction in secondary kinetic energy.

1.
Zorić
,
T.
,
Popović
,
I.
,
Sjolander
,
S. A.
,
Praisner
,
T.
, and
Grover
,
E.
, 2007, “
Comparative Investigation of Three Highly Loaded LP Turbine Airfoils: Part I—Measured Profile and Secondary Losses at Design Incidence
,” ASME Paper No. GT-2007-27537.
2.
Zorić
,
T.
,
Popović
,
I.
,
Sjolander
,
S. A.
,
Praisner
,
T.
, and
Grover
,
E.
, 2007, “
Comparative Investigation of Three Highly Loaded LP Turbine Airfoils: Part II—Measured Profile and Secondary Losses at Off-Design Incidence
,” ASME Paper No. GT-2007-27538.
3.
Hodson
,
H. P.
, and
Dominy
,
R. G.
, 1987, “
The Off-Design Performance of a Low-Pressure Turbine Cascade
,”
ASME J. Turbomach.
,
109
, pp.
201
209
. 0889-504X
4.
Chung
,
J. T.
, and
Simon
,
T. W.
, 1991, “
Three-Dimensional Flow Near the Blade/Endwall Junction of a Gas Turbine: Application of a Boundary Layer Fence
,” ASME Paper No. 91-GT-45.
5.
Aunapu
,
N. V.
,
Volino
,
R. J.
,
Flack
,
K. A.
, and
Stoddard
,
R. M.
, 2000, “
Secondary Flow Measurements in a Turbine Passage With Endwall Flow Modification
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
651
658
.
6.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Shahpar
,
S.
,
Taylor
,
M. D.
,
Hartland
,
J.
, and
Gregory-Smith
,
D. G.
, 2000, “
Nonaxisymmetric Turbine End Wall Design—Part I: Three-Dimensional Linear Design System
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
278
285
.
7.
Yan
,
J.
,
Gregory-Smith
,
D. G.
, and
Walker
,
P. J.
, 1990, “
Secondary Flow Reduction in a Nozzle Guide Vane by Non-Axisymmetric End-Wall Contouring
,” ASME Paper No. 99-GT-339.
8.
Hartland
,
J.
,
Gregory-Smith
,
D. G.
,
Harvey
,
N. W.
, and
Rose
,
M. G.
, 2000, “
Nonaxisymmetric Turbine End Wall Design—Part II: Experimental Validation
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
286
293
.
9.
Rose
,
M. G.
,
Harvey
,
N. W.
,
Seaman
,
P.
,
Newman
,
D. A.
, and
McManus
,
D.
, 2001, “
Improving the Efficiency of the Trent 500 HP Turbine Using Non-Axisymmetric End Walls: Part II Experimental Validation
,” ASME Paper No. 2001-GT-0505.
10.
Ingram
,
G.
,
Gregory-Smith
,
D.
, and
Harvey
,
N.
, 2005, “
Investigation of a Novel Secondary Flow Feature in a Turbine Cascade With End Wall Profiling
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
209
214
.
11.
Praisner
,
T. J.
,
Allen-Bradely
,
E.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
, and
Sjolander
,
S. A.
, 2007, “
Application of Non-Axisymmetric Endwall Contouring to Conventional and High-Lift Turbine Airfoils
,” ASME Paper No. GT-2007-27579.
12.
McAuliffe
,
B. R.
, and
Sjolander
,
S. A.
, 2004, “
Active Flow Control Using Steady Blowing for a Low-Pressure Turbine Cascade
,”
ASME J. Turbomach.
,
126
, pp.
509
537
. 0889-504X
13.
Mahallati
,
A.
,
McAuliffe
,
B. R.
,
Sjolander
,
S. A.
, and
Praisner
,
T. J.
, 2007, “
Aerodynamics of a Low-Pressure Turbine Airfoil at Low-Reynolds Numbers Part 1—Steady Flow Measurements
,” ASME Paper No. GT-2007-27347.
14.
Benner
,
M. W.
, 2003, “
The Effects of Leading Edge Geometry on Profile and Secondary Losses in Turbine Cascades
,” Ph.D. thesis, Carleton University, Ottawa, ON, Canada.
15.
Gregory-Smith
,
D. G.
, and
Cleak
,
J. G. E.
, 1992, “
Secondary Flow Measurements in a Turbine Cascade With High Inlet Turbulence
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
173
183
.
16.
Zoric´
,
T.
, 2006, “
Comparative Study of Secondary Losses for 3 Highly-Loaded Low-Pressure Turbine Cascades
,” MS thesis, Carleton University, Ottawa, ON, Canada.
17.
Weiss
,
A. P.
, and
Fottner
,
L.
, 1995, “
The Influence of Load Distribution on Secondary Flow in Straight Turbine Cascades
,”
ASME J. Turbomach.
0889-504X,
117
, pp.
133
141
.
18.
Mayle
,
R. E.
, 1991, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
, pp.
560
569
. 0889-504X
19.
Sieverding
,
C. H.
, 1985, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
, pp.
248
257
. 0742-4795
20.
Langston
,
L. S.
, 2001, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. N.Y. Acad. Sci.
,
934
, pp.
11
26
. 0077-8923
21.
Gregory-Smith
,
D. G.
, 1997, “
Physics of Secondary Flows
,”
Secondary and Tip-Clearance Flows in Axial Turbines
(
VKI Lecture Series 1997-01
),
C. H.
Sieverding
, ed.,
Von Karman Institute for Fluid Dynamics
,
Sint-Genesius-Rode, Belgium
.
22.
Rose
,
M. G.
, 1994, “
Non-Axisymmetric Endwall Profiling in the HP NGV’s of an Axial Flow Gas Turbine
,” ASME Paper No. 94-GT-249.
23.
Praisner
,
T. J.
, and
Smith
,
C. R.
, 2006, “
The Dynamics of the Horseshoe Vortex and Associated Endwall Heat Transfer Part II: Time-Mean Results
,”
ASME J. Turbomach.
0889-504X,
128
(
4
), pp.
755
762
.
24.
Hodson
,
H. P.
, and
Dominy
,
R. G.
, 1987, “
Three-Dimensional Flow in a Low-Pressure Turbine Cascade at Its Design Condition
,”
ASME J. Turbomach.
,
109
, pp.
177
185
. 0889-504X
25.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E.
, 1997, “
Flow Visualization in Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
1
8
.
26.
Sharma
,
O. P.
, and
Butler
,
T. L.
, 1987, “
Predictions of Endwall Losses and Secondary Flows in Axial Turbine Cascades
,”
ASME J. Turbomach.
,
109
, pp.
229
236
. 0889-504X
27.
Benner
,
M. W.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
, 2004, “
The Influence of Leading Edge Geometry on Secondary Losses in a Turbine Cascades at the Design Incidence
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
277
287
.
28.
Sieverding
,
C. H.
, and
Van Den Bosche
,
P.
, 1983, “
Use of Coloured Smoke to Visualize Secondary Flows in a Turbine Blade Cascade
,”
J. Fluid Mech.
0022-1120,
134
(
1
), pp.
85
89
.
29.
Denton
,
J. D.
, 1993, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
0889-504X,
115
, pp.
621
650
.
30.
Ingram
,
G. L.
,
Gregory-Smith
,
D. G.
,
Rose
,
M. G.
,
Harvey
,
N. W.
, and
Brennan
,
G.
, 2002, “
The Effect of End-Wall Profiling on Secondary Flows and Loss Development in a Turbine Cascade
,” ASME Paper No. GT-2002-30339.
31.
Gregory-Smith
,
D. G.
,
Graves
,
C. P.
, and
Walsh
,
J. A.
, 1988, “
Growth of Secondary Losses and Vorticity in an Axial Turbine Cascade
,”
ASME J. Turbomach.
,
110
, pp.
1
8
. 0889-504X
You do not currently have access to this content.