The present study investigates the effects of secondary flow due to angled rib turbulators on the heat/mass transfer in the square channels with channel rotation and bleed flow. The angle of attack of the angled ribs was 45deg. The bleed holes were located between the rib turbulators on either the leading or trailing surface. The tests were conducted under the conditions corresponding to various bleed ratios (BR=0.0, 0.2, and 0.4) and rotation numbers (Ro=0.0, 0.2, and 0.4) at Re=10,000. The results suggest that the heat/mass transfer characteristics were influenced by the Coriolis force, the decrement of the main flow rate, and the secondary flow. In the 90deg angled ribbed channel, the heat/mass transfer reduced on the leading surface with an increment in the rotation number, but it increased on the trailing surface. However, it decreased on both surfaces in the 45deg angled ribbed channel. As the bleed ratio increased, the Sherwood number ratios decreased on both the bleeding and nonbleeding surfaces for the 45deg angled ribs but increased on the bleeding surface for the 90deg angled ribs.

1.
Han
,
J. C.
,
Glicksman
,
L. R.
, and
Rohsenow
,
W. M.
, 1978, “
An Investigation of Heat Transfer and Friction for Rib-Roughened Surfaces
,”
Int. J. Heat Mass Transfer
0017-9310,
21
, pp.
1143
1156
.
2.
Kukreja
,
R. T.
,
Lau
,
S. C.
, and
McMillin
,
R. D.
, 1993, “
Local Heat/Mass Transfer Distribution in a Square Channel With Full and V-Shaped Ribs
,”
Int. J. Heat Mass Transfer
0017-9310,
36
, pp.
2013
2020
.
3.
Agliga
,
D. A.
, 1994, “
Convective Heat Transfer Distributions Over Plates With Square Ribs From Infrared Thermography Measurements
,”
Int. J. Heat Mass Transfer
0017-9310,
36
(
3
), pp.
363
374
.
4.
Acharya
,
S.
,
Myrum
,
T.
,
Qiu
,
X.
, and
Sinha
,
S.
, 1997, “
Developing and Periodically Developed Flow, Temperature and Heat Transfer in a Ribbed Duct
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
461
479
.
5.
Astarita
,
T.
,
Cardon
,
G.
, and
Carlomagno
,
G. M.
, 1998, “
Average Heat Transfer Measurements Near a Sharp 180Degree Turn Channel for Different Aspect Ratios
,”
IMechE Conference Trans.: In Optical Methods and Data Processing in Heat and Fluid Flow
, London, pp.
137
146
.
6.
Metzger
,
D. E.
, and
Vedula
,
R. P.
, 1987, “
Heat Transfer in Triangular Channels With Angled Roughness Ribs on Two Walls
,”
Exp. Heat Transfer
0891-6152,
1
(
1
), pp.
31
44
.
7.
Yang
,
W.-J.
,
Zhang
,
N.
, and
Chiou
,
J.
, 1992, “
Local Heat Transfer in a Rotating Serpentine Flow Passage
,”
ASME J. Heat Transfer
0022-1481,
114
, pp.
354
361
.
8.
Iacovides
,
H.
,
Jackson
,
D. C.
,
Kelemenis
,
G.
,
Launder
,
B. E.
, and
Yuan
,
Y. M.
, 1999, “
Experiments on Local Heat Transfer in a Rotating Square-Ended U-bend
,”
Int. J. Heat Fluid Flow
0142-727X,
20
, pp.
302
310
.
9.
Dutta
,
S.
, and
Han
,
J. C.
, 1996, “
Local Heat Transfer in Rotating Smooth and Ribbed Two-Pass Square Channels With Three Channel Orientations
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
578
576
.
10.
Murata
,
A.
, and
Mochizuki
,
S.
, 1999, “
Effect of Cross-sectional Aspect Ratio on Turbulent Heat Transfer in an Orthogonally Rotating Rectangular Smooth Duct
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
3803
3814
.
11.
Taslim
,
M. E.
,
Li
,
T.
, and
Spring
,
S. D.
, 1995, “
Experimental Study of the Effects of Bleed Holes on Heat Transfer and Pressure Drop in Trapezoidal Passages With Tapered Turbulators
,”
ASME J. Turbomach.
0889-504X,
117
, pp.
281
289
.
12.
Shen
,
J. R.
,
Wang
,
Z.
,
Ireland
,
P. T.
,
Jones
,
T. V.
, and
Byerley
,
A. R.
, 1996, “
Heat Transfer Enhancement Within a Turbine Blade Cooling Passage Using Ribs and Combinations of Ribs With Film Cooling Holes
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
428
434
.
13.
Thurman
,
D.
, and
Poinastte
,
P.
, 2001, “
Experimental Heat Transfer and Bulk Air Temperature Measurements for a Multipass Internal Cooling Model With Ribs and Bleed
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
90
96
.
14.
Ekkad
,
S. V.
,
Huang
,
Y.
, and
Han
,
J. C.
, 1998, “
Detailed Heat Transfer Distributions in Two-Pass Square Channels With Rib Turbulators and Bleed Holes
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
3781
3791
.
15.
Kim
,
K. M.
,
Kim
,
S. I.
,
Jeon
,
Y. H.
,
Lee
,
D. H.
, and
Cho
,
H. H.
, 2007, “
Detailed Heat/Mass Transfer Distributions in a Rotating Smooth Channel With Bleed Flow
,”
ASME J. Heat Transfer
0022-1481,
129
(
11
), pp.
1538
1545
.
16.
Jeon
,
Y. H.
,
Park
,
S. H.
,
Kim
,
K. M.
,
Lee
,
D. H.
, and
Cho
,
H. H.
, 2007, “
Effects of Bleed Flow on Heat/Mass Transfer in a Rotating Rib-Roughened Channel
,”
ASME J. Turbomach.
0889-504X,
129
(
3
), pp.
636
642
.
17.
Ambrose
,
D.
,
Lawrenson
,
I. J.
, and
Sparke
,
C. H. S.
, 1975, “
The Vapor Pressure of Naphthalene
,”
J. Chem. Thermodyn.
0021-9614,
7
, pp.
1173
1176
.
18.
Goldstein
,
R. J.
, and
Cho
,
H. H.
, 1995, “
A Review of Mass Transfer Measurements Using Naphthalene Sublimation
,”
Exp. Therm. Fluid Sci.
0894-1777,
10
, pp.
416
434
.
19.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainty in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
20.
McAdams
,
W. H.
, 1942,
Heat Transmission
, 2nd ed.,
McGraw-Hill
,
New York
.
21.
Petukhov
,
B. S.
, 1970,
Advances in Heat Transfer
, Vol.
6
,
Academic
,
New York
, Vol.
6
, pp.
503
504
.
22.
Ekkad
,
S. V.
, and
Han
,
J. C.
, 1997, “
Detailed Heat Transfer Distributions in Two-Pass Square Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
2525
2537
.
You do not currently have access to this content.