Flow characteristics in stationary two-pass channels with a sharp 180-deg turn have been measured using LDV (laser Doppler velocimeter), directing special attention to the influence of the size of the turn clearance on the flow structure. The main features of the flow, flow separation and recirculation, secondary flow, turbulence intensities, measured with Re=3.5×104 for three turn clearances, are presented. A close comparison of the velocity data with local Sherwood number distributions on the channel walls reveals that the wall-normal velocity mainly dominates the heat transfer in the channel, but the wall-parallel component also contributes locally to heat transfer after the turn.

1.
Iacovides
,
H.
, and
Raisee
,
M.
, 1999, “
Recent Progress in the Computation of Flow and Heat Transfer in Internal Cooling Passages of Turbine Blades
,”
Int. J. Heat Fluid Flow
0142-727X,
20
,
320
328
.
2.
Metzger
,
D. E.
, and
Sahm
,
M. K.
, 1986, “
Heat Transfer Around Sharp 180-deg Turns in Smooth Rectangular Channels
,”
ASME J. Heat Transfer
0022-1481,
108
, pp.
500
506
.
3.
Chyu
,
M. K.
, 1991, “
Regional Heat Transfer in Two-Pass and Three-Pass Passages With 180-deg Sharp Turn
,”
ASME J. Heat Transfer
0022-1481,
113
, pp.
63
70
.
4.
Han
,
J. C.
,
Chandra
,
P. R.
, and
Lau
,
S. C.
, 1988, “
Local Heat/Mass Transfer Distributions Around Sharp 180deg Turns in Two-Pass Smooth and Rib-Roughened Channels
,”
ASME J. Heat Transfer
0022-1481,
110
, pp.
91
98
.
5.
Ekkad
,
S. V.
, and
Han
,
J. C.
, 1995, “
Local Heat Transfer Distributions Near a Sharp 180° Turn of a Two-Pass Smooth Square Channel Using a Transient Liquid Crystal Image Technique
,”
J. Flow Visualization Image Process.
1065-3090,
2
, pp.
285
297
.
6.
Ekkad
,
S. V.
, and
Han
,
J. C.
, 1997, “
Detailed Heat Transfer Distributions in Two-Pass Square Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
2525
2537
.
7.
Ekkad
,
S. V.
,
Pamula
,
G.
, and
Shantiniketanam
,
M.
, 2001, “
Detailed Heat Transfer Measurements Inside Straight and Tapered Two-Pass Channels With Rib Turbulators
,”
Exp. Therm. Fluid Sci.
0894-1777,
22
, pp.
155
163
.
8.
Wang
,
Z.
,
Ireland
,
P. T.
,
Kohler
,
S. T.
, and
Chew
,
J.
, 1998, “
Heat Transfer Measurements to a Gas Turbine Cooling Passage With Inclined Ribs
,”
ASME J. Turbomach.
0889-504X,
120
No.
1
, pp.
63
69
.
9.
Mochizuki
,
S.
,
Murata
,
A.
,
Shibata
,
R.
, and
Yang
,
W.-J.
, 1998, “
Detailed Measurements of Local Heat Transfer Coefficients in Turbulent Flow Through Smooth and Rib-Roughened Serpentine Passages With a 180° Sharp Bend
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
1925
1934
.
10.
Astarita
,
T.
, and
Cardone
,
G.
, 2000, “
Thermodynamic Analysis of the Flow in a Sharp 180° Turn Channel
,”
Exp. Therm. Fluid Sci.
0894-1777,
20
, pp.
188
200
.
11.
Schabacker
,
J.
,
Boelcs
,
A.
, and
Johnson
,
B. V.
, 1998, “
PIV Investigation of the Flow Characteristics in an Internal Coolant Passage With Two Ducts Connected by a Sharp 180Deg Bend
,” ASME Paper No. 98-GT-544.
12.
Schabacker
,
J.
,
Boelcs
,
A.
, and
Johnson
,
B. V.
, 1999, “
PIV Investigation of the Flow Characteristics in an Internal Coolant Passage With 45Deg Rib Arrangement
,” ASME Paper No. 99-GT-120.
13.
Liou
,
T.-M.
, and
Chen
,
C.-C.
, 1999, “
LDV Study of Developing Flows Through a Smooth Duct With a 180Deg Straight-Corner Turn
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
167
174
.
14.
Liou
,
T.-M.
,
Tzeng
,
Y.-Y.
, and
Chen
,
C.-C.
, 1999, “
Fluid Flow in a 180-deg Sharp Turning Duct With Different Divider Thickness
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
569
576
.
15.
Liou
,
T.-M.
,
Chen
,
C.-C.
,
Tzeng
,
Y.-Y.
, and
Tsai
,
T.-W.
, 2000, “
Non-Intrusive Measurements of Near-Wall Fluid Flow and Surface Heat Transfer in a Serpentine Passage
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
3233
3244
.
16.
Son
,
S. Y.
,
Kihm
,
K. D.
, and
Han
,
J. C.
, 2002, “
PIV Flow Measurements for Heat Transfer Characterization in Two-Pass Square Channels With Smooth and 90° Ribbed Walls
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
4809
4822
.
17.
Besserman
,
D. L.
, and
Tanrikut
,
S.
, 1992, “
Comparison of Heat Transfer Measurements With Computations for Turbulent Flow Around a 180Deg Bend
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
865
871
.
18.
Wang
,
T. S.
, and
Chyu
,
M. K.
, 1994, “
Heat Convection in a 180-Deg Turning Duct With Different Turn Configurations
,”
Int. J. Heat Mass Transfer
0017-9310,
8
, pp.
595
601
.
19.
Murata
,
A.
, and
Mochizuki
,
S.
, 2004, “
Large Eddy Simulation of Turbulent Heat Transfer in a Rotating Two-Pass Smooth Square Channel With Sharp 180° Turns
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
683
698
.
20.
Hirota
,
M.
,
Fujita
,
H.
,
Tanaka
,
A.
,
Araki
,
S.
, and
Tanaka
,
T.
, 1997, “
Local Heat (Mass) Transfer Characteristics in Rectangular Ducts With a Sharp 180-Degree Turn
,”
Energy Convers. Manage.
0196-8904,
38
, pp.
1155
1168
.
21.
Hirota
,
M.
,
Fujita
,
H.
,
Syuhada
,
A.
,
Araki
,
S.
,
Yoshida
,
T.
, and
Tanaka
,
T.
, 1999, “
Heat/Mass Transfer Characteristics in Two-Pass Smooth Channels With a Sharp 180-Deg Turn
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
3757
3770
.
22.
Syuhada
,
A.
,
Hirota
,
M.
,
Fujita
,
H.
,
Araki
,
S.
,
Yanagida
,
M.
, and
Tanaka
,
T.
, 2001, “
Heat (Mass) Transfer in Serpentine Flow Passage With Rectangular Cross-Section
,”
Energy Convers. Manage.
0196-8904,
42
, pp.
1867
1885
.
23.
Hirota
,
M.
,
Fujita
,
H.
,
Cai
,
L.
,
Nakayama
,
H.
,
Yanagida
,
M.
, and
Syafa’at
,
A.
, 2002, “
Heat (Mass) Transfer in Rectangular Cross-Sectioned Two-Pass Channels With an Inclined Divider Wall
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
1093
1107
.
24.
Hjelmfelt
,
A. T.
, and
Mockros
,
L. F.
, 1966, “
Motion of Discrete Particles in a Turbulent Fluid
,”
Appl. Sci. Res.
0003-6994,
16
, pp.
149
161
.
25.
Visualization Society of Japan
, 1986,
Handbook of Flow Visualization
,
Asakura Pub.
, Tokyo, pp.
158
164
(in Japanese).
26.
JSME
, 1987, Measurement Uncertainties (translated from ASME performance test codes, supplement on instruments and apparatus, Part 1), Maruzen, Tokyo (in Japanese).
27.
Burggraf
,
F.
, 1970, “
Experimental Heat Transfer and Pressure Drop With Two-Dimensional Discrete Turbulence Promoters Applied to Two Opposite Walls of a Square Tube
,”
Augmentation of Convective Heat and Mass Transfer
,
E. E.
Bergles
and
R. L.
Webb
, eds.,
ASME
, New York, pp.
70
79
.
28.
Fujita
,
H.
,
Hirota
,
M.
,
Yokosawa
,
H.
,
Hasegawa
,
M.
, and
Gotoh
,
I.
, 1990, “
Fully Developed Turbulent Flows Through Rectangular Ducts With One Roughened Wall
,”
JSME Int. J., Ser. II
0914-8817,
33
, pp.
692
701
.
29.
Taylor
,
A. M. K. P.
,
Whitelaw
,
J. H.
, and
Yianneskis
,
M.
, 1982, “
Curved Ducts With Strong Secondary Motion: Velocity Measurements of Developing Laminar and Turbulent Flow
,”
ASME J. Fluids Eng.
0098-2202,
104
, pp.
350
359
.
30.
Nakayama
,
H.
,
Hirota
,
M.
,
Ono
,
Y.
, and
Fujita
,
H.
, 2003, “
Aerodynamic Analysis of the Sharp Turn Channel Flow Using PIV
,”
Proceedings of Turbulence, Heat and Mass Transfer
,
4
, pp.
293
300
.
31.
Hsieh
,
S.-S.
,
Chen
,
P.-J.
, and
Chin
,
H.-J.
, 1999, “
Turbulent Flow in a Rotating Two-Pass Smooth Channel
,”
ASME J. Fluids Eng.
0098-2202,
121
, pp.
725
734
.
32.
Kostas
,
J.
,
Soria
,
J.
, and
Chong
,
M. S.
, 2002, “
Particle Image Velocimetry Measurements of a Backward-Facing Step Flow
,”
Exp. Fluids
0723-4864,
33
, pp.
838
853
.
33.
Nishino
,
K.
,
Samada
,
M.
,
Kasuya
,
K.
, and
Torii
,
K.
, 1996, “
Turbulence Statistics in the Stagnation Region of an Axisymmetric Impinging Jet Flow
,”
Int. J. Heat Fluid Flow
0142-727X,
17
, pp.
193
201
.
34.
Liou
,
T.-M.
,
Chen
,
C.-C.
, and
Chen
,
M.-Y.
, 2003, “
Rotating Effect on Fluid Flow in Two Smooth Ducts Connected by a 180-Degree Bend
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
138
148
.
You do not currently have access to this content.