Local measurements of the heat transfer coefficient and pressure coefficient were conducted on the tip and near tip region of a generic turbine blade in a five-blade linear cascade. Two tip clearance gaps were used: 1.6% and 2.8% chord. Data was obtained at a Reynolds number of 2.3×105 based on exit velocity and chord. Three different tip geometries were investigated: A flat (plain) tip, a suction-side squealer, and a cavity squealer. The experiments reveal that the flow through the plain gap is dominated by flow separation at the pressure-side edge and that the highest levels of heat transfer are located where the flow reattaches on the tip surface. High heat transfer is also measured at locations where the tip-leakage vortex has impinged onto the suction surface of the aerofoil. The experiments are supported by flow visualization computed using the CFX CFD code which has provided insight into the fluid dynamics within the gap. The suction-side and cavity squealers are shown to reduce the heat transfer in the gap but high levels of heat transfer are associated with locations of impingement, identified using the flow visualization and aerodynamic data. Film cooling is introduced on the plain tip at locations near the pressure-side edge within the separated region and a net heat flux reduction analysis is used to quantify the performance of the successful cooling design.

1.
Booth
,
T. C.
,
Dodge
,
P. R.
, and
Hepworth
,
H. K.
, 1982, “
Rotor Tip Leakage: Part 1; Basic Methodology
,”
ASME J. Eng. Power
0022-0825,
104
, pp.
154
161
.
2.
Mayle
,
R. E.
, and
Metzger
,
D. E.
, 1986, “
Heat Transfer at the Tip of an Unshrouded Turbine Blade
,”
Proceedings, Seventh International Heat Transfer Conference
, Vol.
3
, pp.
87
92
.
3.
Srinivasan
,
V.
, and
Goldstein
,
R. J.
, 2003, “
Effect of Endwall Motion on Blade Tip Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
267
273
.
4.
Bunker
,
R. S.
, 2001, “
A Review of Turbine Blade Tip Heat Transfer, Heat Transfer in Gas Turbine Systems
,”
Ann. N.Y. Acad. Sci.
0077-8923,
934
, pp.
64
79
.
5.
Kim
,
Y. W.
, and
Metzger
,
D. E.
, 1993, “
Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models
,” ASME Paper No. 93-GT–208.
6.
Chen
,
G.
,
Dawes
,
W. N.
, and
Hodson
, 1993, “
A Numerical and Experimental Investigation of Turbine Tip Gap Flow
,”
29th Joint Propulsion Conference and Exhibit
, AIAA Paper No. 93-2253.
7.
Bunker
,
R. S.
,
Bailey
,
J. C.
, and
Ameri
,
A. A.
, 1999, “
Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine. Part I: Experimental Results
,” ASME Paper No. 99-GT-169.
8.
Kwak
,
J. S.
, and
Han
,
J. C.
, 2002, “
Heat Transfer Coefficient and Film-Cooling Effectiveness on a Gas Turbine Blade Tip
,” ASME Paper No. GT-2002-30194.
9.
Kwak
,
J. S.
, and
Han
,
J. C.
, 2002, “
Heat Transfer Coefficient and Film-Cooling Effectiveness on the Squealer Tip of a Gas Turbine Blade
,” ASME Paper No. GT-2002-30555.
10.
Jin
,
P.
, and
Goldstein
,
R. J.
, 2002, “
Local Mass/Heat Transfer on Turbine Blade Near-Tip Surfaces
,” ASME Paper No. GT-2002-30556.
11.
Heyes
,
F. J. G.
,
Hodson
,
H. P.
, and
Dailey
,
G. M.
, 1991, “
The Effect of Blade Tip Geometry on the Tip Leakage Flow in Axial Turbine Cascades
,” ASME Paper No. 91-GT-135.
12.
Hodson
,
H. P.
,
Banieghbal
,
M. R.
, and
Dailey
,
G. M.
, 1995, “
Three-Dimensional Interactions in the Rotor of an Axial Turbine
,” AIAA
J. Propul. Power
0748-4658,
11
(
2
), pp.
196
204
.
13.
Bindon
,
J. P.
, 1989, “
The Measurement and Formation of Tip Clearance Loss
,”
ASME J. Turbomach.
0889-504X,
111
, pp.
257
263
.
14.
Ireland
,
P. T.
, and
Jones
,
T. V.
, 2000, “
Liquid Crystal measurements of Heat Transfer and Surface Shear Stress
,”
Meas. Sci. Technol.
0957-0233,
11
, pp.
969
986
.
15.
Farina
,
D. J.
,
Hacker
,
J. M.
,
Moffat
,
R. J.
, and
Eaton
,
K.
, 1993, “
Illuminant Invariant Calibration of Thermochromic Liquid Crystals
,”
Visualization of Heat Transfer Processes
, American Society of Mechanical Engineers, Heat Transfer Division, Vol.
252
, pp.
1
11
.
16.
Syson
,
B. J.
,
Pilbrow
,
R. G.
, and
Owen
,
J. M.
, 1996, “
Effect of Rotation on Temperature Response of Thermochromic Liquid Crystal
,”
Int. J. Heat Fluid Flow
0142-727X,
17
, pp.
491
499
.
17.
Owen
,
J. M.
,
Newton
,
P. J.
, and
Lock
,
G. D.
, 2003, “
Transient Heat Transfer Measurements Using Thermochromic Liquid Crystal. Part 2: Experimental Uncertainties
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
23
28
.
18.
Gillespie
,
D. R. H.
,
Wang
,
Z.
, and
Ireland
,
P. T.
, 2001, “
Heater element
,” European Patent No. 0847679.
19.
Schultz
,
D. L.
, and
Jones
,
T. V.
, 1973, “
Heat Transfer Measurements in Short Duration Hypersonic Facilities
,” Paper No. AGARD-AG-165.
20.
Newton
,
P. J.
,
Yan
,
Y.
,
Stevens
,
N. E.
,
Evatt
,
S. T.
,
Lock
,
G. D.
, and
Owen
,
J. M.
, 2003, “
Transient Heat Transfer Measurements Using Thermochromic Liquid Crystal. Part 1: An Improved Technique
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
14
22
.
21.
Gillespie
,
D. R. H.
,
Wang
,
Z.
,
Ireland
,
P. T.
, and
Kohler
,
S. T.
, 1998, “
Full Surface Local Heat Transfer Measurements in a Model of an Integrally Cast Impingement Cooling Geometry
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
92
99
.
22.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
, 1994, “
Film Cooling with Compound Angle Holes: Heat Transfer
,” ASME Paper No. 94-GT-311.
23.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
, 2002, “
A Converging Slot-Hole Film-Cooling Geometry—Part 2: Transonic Nozzle Guide Vane Heat Transfer and Loss
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
461
471
.
You do not currently have access to this content.