The flow structure and turbulence around the leading and trailing edges of a rotor blade operating downstream of a row of inlet guide vanes (IGV) are investigated experimentally. Particle image velocimetry (PIV) measurements are performed in a refractive index matched facility that provides unobstructed view of the entire flow field. Data obtained at several rotor blade phases focus on modification to the flow structure and turbulence in the IGV wake as it propagates along the blade. The phase-averaged velocity distributions demonstrate that wake impingement significantly modifies the wall-parallel velocity component and its gradients along the blade. Due to spatially non-uniform velocity distribution, especially on the suction side, the wake deforms while propagating along the blade, expanding near the leading edge and shrinking near the trailing edge. While being exposed to the nonuniform strain field within the rotor passage, the turbulence within the IGV wake becomes spatially nonuniform and highly anisotropic. Several mechanisms, which are consistent with rapid distortion theory (RDT) and distribution of turbulence production rate, contribute to the observed trends. For example, streamwise (in rotor frame reference) diffusion in the aft part of the rotor passage enhances the streamwise fluctuations. Compression also enhances the turbulence production very near the leading edge. However, along the suction side, rapid changes to the direction of compression and extension cause negative production. The so-called wall blockage effect reduces the wall-normal component.

1.
Rai
,
M. M.
, 1987, “
Navier-Stokes Simulation of Rotor/Stator Interaction Using Patched and Overlaid Grids
,”
J. Propul. Power
0748-4658,
3
, pp.
387
396
.
2.
Ho
,
Y. H.
, and
Lakshminarayana
,
B.
, 1995, “
Computation of Unsteady Viscous Flow Through Turbomachinery Blade Row due to Upstream Rotor Wakes
,”
ASME J. Turbomach.
0889-504X,
117
, pp.
541
552
.
3.
Valkov
,
T. V.
, and
Tan
,
C. S.
, 1998, “
Effect of Upstream Rotor Vortical Disturbances on the Time-Average Performance of Axial Compressor Stators: Part I-Framework of Technical Approach and Wake-Stator Blade Interactions
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
377
386
.
4.
Chen
,
T.
,
Vasanthakumar
,
P.
, and
He
,
L.
, 2001, “
Analysis of Unsteady Blade Row Interaction Using Nonlinear Harmonic Approach
,”
J. Propul. Power
0748-4658,
17
(
3
), pp.
651
658
.
5.
Gerolymos
,
G. A.
,
Michon
,
G. J.
, and
Neubauer
,
J.
, 2002, “
Analysis and Application of Chorochronic Periodicity in Turbomachinery Rotor/Stator Interaction Computations
,”
J. Propul. Power
0748-4658,
18
(
6
), pp.
1139
1152
.
6.
Dong
,
Y.
, and
Cumpsty
,
N. A.
, 1990, ”
Compressor Blade Boundary Layers—Part II: Measurements With Incident Wakes
,”
J. Turbomach.
0889-504X,
112
(
2
), pp.
231
240
.
7.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H. W.
, 1997, “
Boundary Layer Development in Axial Flow Compressors and Turbines—Part I: Composite Picture
,”
J. Turbomach.
0889-504X,
119
(
1
), pp.
114
127
.
8.
Schobeiri
,
M. T.
,
Ozturk
,
B.
, and
Ashpis
,
D. E.
, 2003, “
On the Physics of Flow Separation Along the Low Pressure Turbine Blade Under Unsteady Flow Conditions
,”
Proceedings of ASME Turbo Expo 2003
, Power for Land, Sea and Air, June 16-19, 2003, Atlanta, GA.
9.
Shin
,
Y. H.
,
Elder
,
R. L.
, and
Bennett
,
I.
, 2003, “
Boundary Layer Measurement on the Blade Surface of a Multi-Stage Axial Flow Compressor
,”
Proceedings of ASME Turbo Expo 2003
, Power for Land, Sea and Air, June 16-19, 2003, Atlanta, GA.
10.
Soranna
,
F.
,
Chow
,
Y. C.
,
Uzol
,
O.
, and
Katz
,
J.
, 2004, “
Rotor Boundary Layer Response to an Impinging Wake
,”
Proceedings of ASME Heat Transfer/Fluids Engineering Summer Conference
, Charlotte, NC, July 11-15.
11.
Smith
,
J. H.
, Jr.
, 1966, “
Wake Dispersion In Turbomachines
,”
ASME J. Basic Eng.
0021-9223,
88D
, pp.
688
690
.
12.
Kerrebrock
,
J. L.
, and
Mikolajczak
,
A. A.
, 1970, “
Intra-Stator Transport of Rotor Wakes and Its Effect on Compressor Performance
,”
ASME J. Eng. Power
0022-0825,
92
, pp.
359
368
.
13.
Zaccaria
,
M. A.
, and
Lakshminarayana
,
B.
, 1995, ”
Unsteady Flow Field due to Nozzle Wake Interaction With the Rotor in an Axial Flow Turbine—Part 1: Rotor Passage Flow Field
,” ASME Paper No. 95-GT-295.
14.
Van Zante
,
D. E.
,
Adamczyk
,
J. J.
,
Strazisar
,
A. J.
, and
Okiishi
,
T. H.
, 1997, “
Wake Recovery Performance Benefit in a High-Speed Axial Compressor
,” ASME Paper No. 97-GT-535.
15.
Adler
,
D.
, and
Benyamin
,
R.
, 1999, “
Experimental Investigation of the Stator Wake Propagation Inside the Flow Passages of an Axial Gas Turbine Rotor
,”
International Journal of Turbo and Jet Engines
,
16
, pp.
193
206
.
16.
Sentker
,
A.
, and
Riess
,
W.
, 2000, “
Experimental Investigation of Turbulent Wake-Blade Interaction in Axial Compressors
,”
Int. J. Heat Fluid Flow
0142-727X,
21
, pp.
285
290
.
17.
Sanders
,
A. J.
,
Papalia
,
J.
, and
Fleeter
,
S.
, 2002, “
Multi-Blade Row Interactions in a Transonic Axial Compressor—Part I: Stator Particle Image Velocimetry (PIV) Investigation
,”
ASME J. Turbomach.
0889-504X,
124
(
1
), pp.
10
18
.
18.
Chow
,
Y.-C.
,
Uzol
,
O.
, and
Katz
,
J.
, 2002, “
Flow Non-Uniformities and Turbulent ”Hot Spots” Due to Wake-Blade and Wake-Wake Interactions in a Multistage Turbomachine
,”
ASME J. Turbomach.
0889-504X,
124
(
4
), pp.
553
563
.
19.
Uzol
,
O.
,
Chow
,
Y.-C.
,
Katz
,
J.
, and
Meneveau
,
C.
, 2002, ”
Experimental Investigation of Unsteady Flow Field Within a Two Stage Axial Turbomachine Using Particle Image Velocimetry
,”
ASME J. Turbomach.
0889-504X,
124
(
4
), pp.
542
552
.
20.
Hobson
,
G. V.
, and
Shreeve
,
R. P.
, 1993, “
Inlet Turbulence Distortion and Viscous Flow Development in a Controlled-Diffusion Compressor Cascade at Very High Incidence
,”
J. Propul. Power
0748-4658,
9
(
3
), pp.
397
404
.
21.
Hobson
,
G. V.
,
Wakefield
,
B. E.
, and
Roberts
,
W. B.
, 1996, “
Turbulence Amplification With Incidence at the Leading Edge of a Compressor Cascade
,” ASME Paper No. 96-GT-409.
22.
De La Riva
,
D. H.
,
Devenport
,
W. J.
,
Chittiappa
,
M.
, and
Glegg
,
S. A. L.
, 2004,“
Behavior of Turbulence Flowing Through a Compressor Cascade
,”
AIAA J.
0001-1452,
42
(
7
), pp.
1302
1313
.
23.
Uzol
,
O.
,
Chow
,
Y. C.
,
Katz
,
J.
, and
Meneveau
,
C.
, 2002, “
Unobstructed PIV Measurements Within an Axial Turbo-Pump Using Liquid and Blades With Matched Refractive Indices
,”
Exp. Fluids
0723-4864 ,
33
(
6
), pp.
909
919
.
24.
Roth
,
G. I.
,
Mascenik
,
D. T.
, and
Katz
,
J.
, 1999, “
Measurements of The Flow Structure and Turbulence Within A Ship Bow Wave
,”
Phys. Fluids
1070-6631,
11
, (
11
), pp.
3512
3523
.
25.
Roth
,
G. I.
, and
Katz
,
J.
, 2001, “
Five Techniques for Increasing the Speed and Accuracy of PIV Interrogation
,”
Meas. Sci. Technol.
0957-0233
12
, pp.
238
245
.
26.
Sridhar
,
G.
, and
Katz
,
J.
, 1995, “
Drag and Lift Forces on Microscopic Bubbles Entrained by a Vortex
,”
Phys. Fluids
1070-6631
7
, pp.
389
399
.
27.
Uzol
,
O.
,
Chow
,
Y. C.
,
Soranna
,
F.
, and
Katz
,
J.
, 2004, “
3D Structure of a Rotor Wake at Mid-Span and Tip Regions
,”
Proceedings of 34th AIAA Fluid Dynamics Conference and Exhibit
, June 28-July 1.
28.
Hodson
,
H. P.
, 1985, “
Measurements of Wake-Generated Unsteadiness in the Rotor Passages of Axial Flow Turbines
,”
J. Eng. Gas Turbines Power
0742-4795,
107
, pp.
467
476
.
29.
Batchelor
,
G. K.
, and
Proudman
,
I.
, 1954, “
The Effect of Rapid Distortion on a Fluid in Turbulent Motion
,”
Q. J. Mech. Appl. Math.
0033-5614,
7
(
1
), pp.
83
103
.
30.
Chen
,
J.
,
Katz
,
J.
, and
Meneveau
,
C.
, 2004, “
Study of Scale-Interactions in Strained and Destrained Turbulence
,”
Proceedings of 2004 ASME Heat Transfer/Fluids Engineering Summer Conference
, July 11-15.
31.
Pope
,
S. B.
, 2000,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
32.
Perot
,
B.
, and
Moin
,
P.
, 1995, “
Shear-Free Turbulent Boundary Layers. Part 1. Physical Insights Into Near-Wall Turbulence
,”
J. Fluid Mech.
0022-1120,
295
, pp.
199
227
.
33.
Hunt
,
J. C. R.
, and
Graham
,
J. M. R.
, 1978, “
Free-Stream Turbulence Near Plane Boundaries
,”
J. Fluid Mech.
0022-1120,
84
, pp.
209
235
.
34.
Uzkan
,
T.
, and
Reynolds
,
W. C.
, 1967, “
A Shear-Free Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
28
, pp.
803
821
.
35.
Thomas
,
N. H.
, and
Hancock
,
P. E.
, 1977, “
Grid Turbulence Near a Moving Wall
,”
J. Fluid Mech.
0022-1120,
82
, pp.
481
496
.
36.
Chow
,
Y. C.
,
Uzol
,
O.
, and
Katz
,
J.
, 2003, “
On the Flow and Turbulence Within the Wake and Boundary Layer of a Rotor Blade Located Downstream of an IGV
,”
Proceedings of ASME Turbo Expo 2003
.
You do not currently have access to this content.