Multistage effects on both aerodynamics and aeromechanics have been identified as significant. Thus, design optimizations for both aerodynamic performance and aeromechanical stability should be done in the unsteady multistage environment. The key issue preventing such a procedure to be carried out is the enormous computing time cost of multistage unsteady simulations. In this paper, a methodology based on the single-passage shape-correction method integrated with an interface disturbance truncation technique has been developed. The capability, efficiency, and accuracy of the developed methodology have been demonstrated for a one and a half stage quasi-three-dimensional transonic compressor with realistic blade counts. Furthermore, the interface disturbance truncation technique enables us to separate multirow interaction effects from the upstream and the downstream, which makes it possible to superimpose different rotor upstream gap effects and rotor downstream gap effects on the middle row rotor aerodynamic damping. In addition, a gap influence coefficient approach has been developed for investigation of all the possible gap spacing combinations of M upstream stator-rotor gaps and N downstream rotor-stator gaps. Then the number of cases that need to be computed has been reduced from M×N to M+N, which saved substantial computing time. The optimization analysis shows significant damping variation (300%) within the chosen intrarow gap design space. The intrarow gap spacing could have either stabilizing or destabilizing effects so that the stabilizing axial spacing could be utilized to increase flutter-free margin in aeromechanical designs. The current approach also can be used for setting aeromechanical constraints for aerodynamic performance optimizations.

1.
Smith
,
L. H.
, 1969, “
Casing Boundary Layers in Multistage Compressors
,”
Proc. Symposium on Flow Research on Blading, Brown Boveri & Co Ltd, Baden, Switzerland
.
2.
Adamczyk
,
J. J.
, 1998, “
Wake Mixing in Axial Flow Compressors
,” ASME paper no. 98-GT-29.
3.
Van Zante
,
D. E.
,
Adamczyk
,
J. J.
,
Strazisar
,
A. J.
, and
Okiishi
,
T. H.
, 2002, “
Wake Recovery Performance Benefit in a High-Speed Axial Compressor
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
275
284
.
4.
Van Zante
,
D. E.
,
To
,
W. M.
, and
Chen
,
J. P.
, 2002, “
Blade Row Interaction Effects on the Performance of a Moderately Loaded NASA Transonic Compressor Stage
,” ASME paper no. GT-2002-30575.
5.
Gorrell
,
S. E.
,
Okiishi
,
T. H.
, and
Copenhaver
W. W.
, 2003, “
Stator-Rotor Interactions in a Transonic Compressor-Part 1: Effects of Blade-Row Spacing on Performance
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
328
335
.
6.
Silkowski
,
P. D.
, and
Hall
,
K. C.
, 1998, “
A Coupled Mode Analysis of Unsteady Multistage Flows in Turbomachinery
.”
ASME J. Turbomach.
0889-504X,
120
, pp.
410
421
.
7.
Li
,
H. D.
, and
He
,
L.
, 2003, “
Blade Aerodynamic Damping Variation with Rotor-Stator Gap-A Computational Study using Single-Passage Approach
," ASME paper no. GT2003-38199.
8.
Cizmas
,
P.
, and
Dorney
,
D. J.
, 1999, “
Parallel Computation of Turbine Blade Clocking
,”
Int. J. Turbo Jet Engines
,
16
(
1
), pp.
49
60
.
9.
Barakos
,
G.
,
Vahdati
,
M.
,
Sayma
,
A I.
,
Breard
,
C.
, and
Imregun
,
M.
, 2001, “
A Fully Distributed Unstructured Navier-Stokes Solver for Large-Scale Aeroelasticity Computations
,”
Aeronaut. J.
0001-9240,
105
, pp.
419
426
.
10.
Arnone
,
A.
, and
Pacciani
,
R.
, 1996, “
Rotor-Stator Interaction Analysis Using the Navier-Stokes Equations and a Multigrid Method
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
679
689
.
11.
Li
,
H. D.
, and
He
,
L.
, 2003, “
Blade Count and Clocking Effects on Three-Bladerow Interaction in a Transonic Turbine
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
632
640
.
12.
Erdos
,
J. I.
,
Alzner
,
E.
, and
McNally
W.
, 1977, “
Numerical solution of periodic transonic flow through a fan stage
,”
AIAA J.
0001-1452,
15
(
11
), pp.
1559
1568
.
13.
Giles
,
M. B.
, 1990, “
Stator/rotor Interaction in a Transonic Turbine
,” AIAA
J. Propul. Power
0748-4658,
6
(
5
), pp.
621
627
.
14.
He
,
L.
, 1992, “
Method of Simulating Unsteady Turbomachinery Flows with Multiple Perturbations
,”
AIAA J.
0001-1452,
30
(
11
), pp.
2730
2735
.
15.
He
,
L.
, and
Denton
,
J. D.
, 1994, “
Three-Dimensional Time-Marching Inviscid and Viscous Solutions for Unsteady Flows around Vibrating Blades
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
469
476
.
16.
Dewhurst
,
S.
, and
He
,
L.
, 2000, “
Unsteady Flow Calculations Through Turbomachinery Stages Using Single-Passage Domain With Shape-Correction Method
,”
9th International Symposium on Unsteady Aerodynamics and Aeroelasticity in Turbomachines, Lyon, France, Sept.
17.
Li
,
H. D.
, and
He
,
L.
, 2002, “
Single-Passage Analysis of Unsteady Flows Around Vibrating Blades of a Transonic Fan Under Inlet Distortion
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
285
292
.
18.
Gerolymos
,
G. A.
,
Michon
,
G. J.
, and
Neubauer
,
J.
, 2002, “
Analysis and Application of Chorochronic Periodicity in Turbomachinery Rotor/Stator Interaction Computations
,” AIAA
J. Propul. Power
0748-4658,
18
, pp.
1139
1152
.
19.
He
,
L.
,
Chen
,
T.
,
Wells
,
R. G.
,
Li
,
Y. S.
, and
Ning
,
W.
, 2002, “
Analysis of Rotor-Rotor and Stator-Stator Interferences in Multi-Stage Turbomachines
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
564
571
.
20.
Hanamura
,
Y.
, and
Tanaka
,
H.
, 1980, “
A Simplified Method to Measure Unsteady Forces Acting on the Vibrating Blades in Cascade
,”
Bull. JSME
0021-3764,
23
(
180
), pp.
880
887
.
21.
Buffum
D. H.
,
Capece
V. R.
,
King
A. J.
, and
El-Aini
Y. M.
, 1998, “
Oscillating Cascade Aerodynamics at Large Mean Incidence
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
122
130
.
22.
Watanabe
,
T.
, and
Kaji
S.
, 1989, “
Theoretical-Study on The Unsteady Aerodynamic Characteristics of an Oscillating Cascade with Tip Clearance-In The Case of a Nonloaded Cascade
,”
JSME Int. J., Ser. II
0914-8817,
32
(
3
), pp.
368
374
23.
He
,
L.
, 1998, “
Unsteady flow in Oscillating Turbine Cascade: Part 1-Linear Cascade Experiment
,”
ASME J. Turbomach.
0889-504X,
120
(
2
), pp.
262
268
.
24.
Yang
,
H.
, and
He
,
L.
, 2003, “
Experiment on Linear Compressor Cascade with 3-D Blade Oscillation
,” ASME paper no. GT-2003-38434.
25.
Giles
,
M. B.
, 1990.
Nonreflecting Boundary Conditions for Euler Equation Calculations
,”
AIAA J.
0001-1452,
28
(
12
), pp.
2050
2058
.
26.
He
,
L.
, 2000, “
Three-Dimensional Unsteady Navier-Stokes Analysis of Stator-Rotor Interaction in Axial-Flow Turbines
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
214
, pp.
13
-
22
.
27.
Li
,
H. D.
, and
He
,
L.
, 2001, “
Single-Passage Solution of Three-Dimensional Unsteady Flows in a Transonic Fan Rotor
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
215
, pp.
653
662
.
28.
Leboeuf
,
F.
, 1996, “
Test Case 1: Transonic Compressor Stage ECL1
,”
Seminar and Workshop on 3D Turbomachinery Flow Prediction IV, January 8-11, Courchevel, France
.
You do not currently have access to this content.