An extensive computational investigation of the effects of unsteady wake/blade interactions on transition and separation in low-pressure turbines has been performed by numerical simulations of two recent sets of experiments using an intermittency transport equation. The experiments considered have been performed by Kaszeta and Simon and Stieger in order to investigate the effects of periodically passing wakes on laminar-to-turbulent transition and separation in low-pressure turbines. The test sections were designed to simulate unsteady wakes in turbine engines for studying their effects on boundary layers and separated flow regions over the suction surface. The numerical simulations of the unsteady wake/blade interaction experiments have been performed using an intermittency transport model. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, with the intermittency factor. Turbulent quantities are predicted by using Menter’s two-equation turbulence model (SST). The intermittency factor is obtained from the transport equation model, which can produce both the experimentally observed streamwise variation of intermittency and a realistic profile in the cross-stream direction. Computational results are compared to the experiments. Overall, general trends are captured and prediction capabilities of the intermittency transport model for simulations of unsteady wake/blade interaction flowfields are demonstrated.

1.
Sharma
, O., 1998, “
Impact of Reynolds Number of LP Turbine Performance
,” In NASA/CP-1998-206958, pp.
65
70
.
2.
Kaszeta
,
R. W.
,
Simon
,
T. W.
, and
Ashpis
,
D. E.
, 2001, “
Experimental Investigation of Transition to Turbulence as Affected by Passing Wakes
,” Proceedings of ASME Turbo Expo 2001,
ASME
, New York, ASME Paper No. 2001-GT-0195.
3.
Halstead
,
D. E
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H.-W.
, 1997, “
Boundary Layer Development in Axial Compressors and Turbines: Part 1 of 4: Composite Picture
,”
ASME J. Turbomach.
0889-504X
119
, pp.
114
127
.
4.
Tiedemann
,
M.
, and
Kost
,
F.
, 1999, “
Unsteady Boundary Layer Transition on a High Pressure Turbine Rotor Blade
,” Proceedings of ASME Turbo Expo 1999,
ASME
, New York, ASME Paper No. 99-GT-194.
5.
Kost
,
F.
,
Hummel
,
F.
, and
Tiedemann
,
M.
, 2000, “
Investigation of the Unsteady Rotor Flow Field in a Single HP Turbine Stage
,” Proceedings of ASME Turbo Expo 2000,
ASME
, New York, ASME Paper No. 2000-GT-432.
6.
Solomon
,
W. J.
, 2000, “
Effects of Turbulence and Solidity on the Boundary Layer Development in a Low Pressure Turbine
,” Proceedings of ASME Turbo Expo 2000,
ASME
, New York, ASME Paper No. 2000-GT-273.
7.
Schobeiri
,
M. T.
and
Pappu
,
K.
, 1997, “
Experimental Study on the Effect of Unsteadiness on Boundary Layer Development on a Linear Turbine Cascade
,”
Exp. Fluids
0723-4864
23
, pp.
306
316
.
8.
Schobeiri
,
M. T.
,
Ozturk
,
B.
, and
Ashpis
,
D. E.
, 2003, “
On the Physics of Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions
,” Proceedings of ASME Turbo Expo 2003,
ASME
, New York, ASME Paper No. GT2003-38917.
9.
Stadtmuller
,
P.
,
Fottner
,
L.
, and
Fiala
,
A.
, 2000, “
Experimental and Numerical Investigation of Wake-Induced Transition on a Highly Loaded Low Pressure Turbine at Low Reynolds Numbers
.” Proceedings of ASME Turbo Expo 2000,
ASME
, New York, ASME Paper No. 2000-GT-269.
10.
Kaszeta
,
R. W.
, and
Simon
,
T. W.
, 2002, “
Experimental Investigation of Transition to Turbulence as Affected by Passing Wakes
,” NASA Contractor Report, NASA-CR-2002-212104, Cleveland.
11.
Stieger
,
R. D.
, 2002, “
The Effects of Wakes on Separating Boundary Layers in Low-Pressure Turbines
,” Ph.D. Dissertation, Cambridge University, Eng. Dept, Cambridge, UK;
12.
Dorney
,
D. J.
,
Ashpis
,
D. E.
,
Halstead
,
D. E.
, and
Wisler
,
D. C.
, 1999, “
Study of Boundary Layer Development in a Two-Stage Low-Pressure Turbine
,” NASA-TM-1999-208913.
13.
Dorney
,
D. J.
,
Flitan
,
H. C.
,
Ashpis
,
D. E.
, and
Solomon
,
W. J.
, 2000, “
Effects of Blade Count on Boundary Layer Development in a Low-Pressure Turbine
,” AIAA Paper No. AIAA-2000-0742.
14.
Arnone
,
A.
,
Marconcini
,
M.
,
Pacciani
,
R.
, and
Spano
,
E.
, 1999, “
Numerical Prediction of Wake-Induced Transition in a Low Pressure Turbine
,” ISABE Paper No. 99-7058.
15.
Fan
,
S.
, and
Lakshminarayana
,
B.
, 1996, “
Computation and Simulation of Wake-Generated Unsteady Pressure and Boundary Layers in Cascades: Part 1-Description of the Approach and Validation
,”
ASME J. Turbomach.
0889-504X
118
, pp.
96
108
.
16.
Eulitz
,
F.
, and
Engel
,
K.
, 1998, “
Numerical Investigation of Wake Interaction in a Low Pressure Turbine
,” Proceedings of ASME Turbo Expo 1998,
ASME
, New York, ASME Paper No. 98-GT-563.
17.
Kim
,
K.
, and
Crawford
,
M. E.
, 2000, “
Prediction of Transitional Heat Transfer Characteristics of Wake-Affected Boundary Layers
,”
ASME J. Turbomach.
0889-504X
122
, pp.
78
87
.
18.
Wu
,
X.
, and
Durbin
,
P. A.
, 2000, “
Numerical Simulation of Heat Transfer in a Transitional Boundary Layer With Passing Wakes
,”
ASME J. Heat Transfer
0022-1481
122
, pp.
248
257
.
19.
Suzen
,
Y. B.
, and
Huang
,
P. G.
, 1999, “
Modelling of Flow Transition Using an Intermittency Transport Equation
,” NASA Contractor Report, NASA-CR-1999-209313, Cleveland, OH.
20.
Savill
,
A. M.
, 1993a, “
Some Recent Progress in the Turbulence Modeling of By-Pass Transition
,”
Near-Wall Turbulent Flows
,
R. M. C.
So
,
C. G.
Speziale
, and
B. E.
Launder
, eds.,
Elsevier Science
, New York, pp.
829
848
.
21.
Savill
,
A. M.
, 1993b, “
Further Progress in the Turbulence Modeling of By-Pass Transition
,”
Engineering Turbulence Modeling and Experiments 2
,
W.
Rodi
and
F.
Martelli
, eds.,
Elsevier Science
, New York, pp.
583
592
.
22.
Simon
,
T. W.
,
Qiu
,
S.
, and
Yuan
,
K.
, 2000, “
Measurements in a Transitional Boundary Layer Under Low-Pressure Turbine Airfoil Conditions
,” NASA Contractor Report, NASA-CR-2000-209957, Cleveland, OH.
23.
Volino
,
R. J.
and
Hultgren
,
L. S.
, 2001, “
Measurements in Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions
,”
ASME J. Turbomach.
0889-504X
123
(
2
), pp.
189
197
.
24.
Suzen
,
Y. B.
and
Huang
,
P. G.
, 2000, “
Modelling of Flow Transition Using an Intermittency Transport Equation
,”
ASME J. Fluids Eng.
0098-2202
122
, pp.
273
284
.
25.
Suzen
,
Y. B.
,
Xiong
,
G.
, and
Huang
,
P. G.
, 2000, “
Predictions of Transitional Flows in Low-Pressure Turbines Using an Intermittency Transport Equation
,” AIAA Paper No. AIAA-2000-2654.
26.
Suzen
,
Y. B.
,
Huang
,
P. G.
,
Hultgren
,
L. S.
, and
Ashpis
,
D. E.
, 2001, “
Predictions of Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions Using an Intermittency Transport Equation
,” AIAA Paper No. AIAA-2001-0446.
27.
Suzen
,
Y. B.
,
Xiong
,
G.
, and
Huang
,
P. G.
, 2002, “
Predictions of Transitional Flows in Low-Pressure Turbines Using an Intermittency Transport Equation
,”
AIAA J.
0001-1452
40
(
2
), pp.
254
266
.
28.
Lake
,
J. P.
,
King
,
P. I.
, and
Rivir
,
R. B.
, 1999, “
Reduction of Separation Losses on a Turbine Blade With Low Reynolds Number
,” AIAA Paper No. AIAA-99-0242.
29.
Lake
,
J. P.
,
King
,
P. I.
, and
Rivir
,
R. B.
, 2000, “
Low Reynolds Number Loss Reduction on Turbine Blades With Dimples and V-Grooves
,” AIAA Paper No. AIAA-00-0738.
30.
Huang
,
J.
,
Corke
,
T. C.
, and
Thomas
,
F. O.
, 2003, “
Plasma Actuators for Separation Control of Low Pressure Turbine Blades
,” AIAA Paper No. AIAA-2003-1027.
31.
Volino
,
R. J.
, 2002, “
Separated Flow Transition Under Simulated Low-Pressure Turbine Airfoil Conditions: Part 1- Mean Flow and Turbulence Statistics
,” Proceedings of ASME Turbo Expo 2002,
ASME
, New York, ASME Paper No. ASME-GT-30236.
32.
Suzen
,
Y. B.
,
Huang
,
P. G.
,
Volino
,
R. J.
,
Corke
,
T. C.
,
Thomas
,
F. O.
,
Huang
,
J.
,
Lake
,
J. P.
, and
King
,
P. I.
, 2003, “
A Comprehensive CFD Study of Transitional Flows in Low-Pressure Turbines Under a Wide Range of Operating Conditions
,” AIAA Paper No. AIAA-2003-3591.
33.
Suzen
,
Y. B.
, and
Huang
,
P. G.
, 2004, “
Comprehensive Validation of an Intermittency Transport Model for Transitional Low-Pressure Turbine Flows
,” AIAA Paper No. AIAA-2004-1121.
34.
Kaszeta
,
R. W.
,
Simon
,
T. W.
,
Ottaviani
,
F.
, and
Jiang
,
N.
, 2003, “
The Influence of Wake Passing Frequency and Elevated Free Stream Turbulence Intensity on Transition in Low-Pressure Turbines
,” AIAA Paper No. AIAA-2003-3633.
35.
Stieger
,
R. D.
, and
Hodson
,
H. P.
, 2003, “
The Transition Mechanism of Highly-Loaded LP Turbine Blades
,” Proceedings of ASME Turbo Expo 2003,
ASME
, New York, ASME Paper No. GT2003-38304.
36.
Qiu
,
S.
, and
Simon
,
T. W.
, 1997, “
An Experimental Investigation of Transition as Applied to Low Pressure Turbine Suction Surface Flows
,” Proceedings of ASME Turbo Expo 1997,
ASME
, New York, ASME Paper No. 97-GT-455.
37.
Jiang
,
N.
, and
Simon
,
T. W.
, 2003a, “
The Influence of Unsteady Acceleration and Turbulence Intensity on Transition in Low-Pressure Turbines
,” AIAA Paper No. AIAA-2003-3630.
38.
Jiang
,
N.
, and
Simon
,
T. W.
, 2003b, “
Modeling Laminar-to-Turbulent Transition in a Low-Pressure Turbine Flow Which is Unsteady Due to Passing Wakes: Part I, Transition Onset
,” Proceedings of ASME Turbo Expo 2003,
ASME
, New York, ASME Paper No. ASME-GT2003-38787.
39.
Jiang
,
N.
, and
Simon
,
T. W.
, 2003c, “
Modeling Laminar-to-Turbulent Transition in a Low-Pressure Turbine Flow Which is Unsteady Due to Passing Wakes: Part II, Transition Path
,” Proceedings of ASME Turbo Expo 2003,
ASME
, New York, ASME Paper No. ASME-GT2003-38963.
40.
Steelant
,
J.
and
Dick
,
E.
, 1996, “
Modelling of Bypass Transition With Conditioned Navier-Stokes Equations Coupled to an Intermittency Transport Equation
,”
Int. J. Numer. Methods Fluids
0271-2091
23
, pp.
193
220
.
41.
Cho
,
J. R.
and
Chung
,
M. K.
, 1992, “
A k-ε-γ Equation Turbulence Model
,”
J. Fluid Mech.
0022-1120
237
, pp.
301
322
.
42.
Simon
,
F. F.
and
Stephens
,
C. A.
, 1991, “
Modeling of the Heat Transfer in Bypass Transitional Boundary-Layer Flows
,” NASA Technical Paper No. 3170.
43.
Menter
,
F. R.
, 1994, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
0001-1452
32
(
8
), pp.
1598
1605
44.
Gostelow
,
J. P.
,
Blunden
,
A. R.
, and
Walker
,
G. J.
, 1994, “
Effects of Free-Stream Turbulence and Adverse Pressure Gradients on Boundary Layer Transition
,”
ASME J. Turbomach.
0889-504X
116
, pp.
392
404
.
45.
Abu-Ghannam
,
B. J.
and
Shaw
,
R.
, 1980, “
Natural Transition of Boundary Layers-The Effects of Turbulence, Pressure Gradient, and Flow History
,”
J. Mech. Eng. Sci.
0022-2542
22
(
5
), pp.
213
228
.
46.
Davis
,
R. L.
,
Carter
,
J. E.
, and
Reshotko
,
E.
, 1987, “
Analysis of Transitional Separation Bubbles on Infinite Swept Wings
,”
ASME J. Turbomach.
0889-504X
25
(
3
), pp.
421
428
.
47.
Rhie
,
C. M.
and
Chow
,
W. L.
1983, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
0001-1452
21
, pp.
1525
1532
.
48.
Hsu
,
M. C.
,
Vogiatzis
,
K.
and
Huang
,
P. G.
2003, “
Validation and Implementation of Advanced Turbulence Models in Swirling and Separated Flows
”, AIAA Paper No. AIAA 2003-0766.
49.
Suzen
,
Y. B.
, and
Huang
,
P. G.
, 2003, “
Numerical Simulation of Wake Passing on Turbine Cascades
,” AIAA Paper No. AIAA-2003-1256.
You do not currently have access to this content.