The paper presents an experimental investigation of large coherent structures, commonly referred to as “von Karman vortex street,” in the wake of a turbine blade at high subsonic Mach number M2,is=0.79 and high Reynolds number (RE=2.8×106 and their effect on the steady and unsteady pressure and temperature distribution in the wake. Ultra short smoke visualizations and two interferometric measurement techniques, holographic interferometry and white light differential interferometry provide insight into the vortex formation and shedding process. In addition, the interferometric measurement provides quantitative information on the stream wise evolution of the minimum density associated with the vortices and on their lateral spreading. Wake traverses are performed with a four-head fork probe carrying a Kiel probe and a fast response Kulite pressure probe for pressure measurements and a thermocouple probe and a cold wire resistance probe for temperature measurements. The results confirm the observation of energy separation in the wake as found by other researchers. The experimental data are a unique source for the validation of unsteady Navier-Stokes codes.

1.
Han
,
L. S.
, and
Cox
,
W. R.
,
1983
, “
A Visual Study of Turbine Blade Pressure Side Boundary Layer
,”
ASME J. Eng. Gas Turbines Power
,
105, pp.
47
52
.
2.
Lawaczeck, O., and Heineman, J., 1975, “von Karman Vortex Street in the Wake of Subsonic and Transonic Blades,” Unsteady Phenomena in Turbomachinery, Paper 28, AGARD-CP-177.
3.
Heinemann, J., and Bu¨tefisch, K. A., 1977, “Determination of the Vortex Shedding Frequency of Cascades With Different Trailing Edge Thicknesses,” Paper 11, AGARD-CP-227.
4.
Carscallen, W. E., Feige, H. U., and Gostelow, J. P., 1996, “Transonic Turbine Vane Wake Flows,” ASME Paper No. 96-GT-419.
5.
Cicatelli, G., and Sieverding, C. H., 1996, “A Review of the Research on Unsteady Turbine Blade Wake Characteristics,” Loss Mechanisms and Unsteady Flows in Turbomachines, Paper 6, AGARD-CP-571.
6.
Cicatelli
,
G.
, and
Sieverding
,
C. H.
,
1997
, “
The Effect of Vortex Shedding on the Unsteady Pressure Distribution Around the Trailing Edge of a Turbine Blade
,”
ASME J. Turbomach.
,
119
, pp.
810
819
.
7.
Desse
,
J. M.
,
1998
, “
Effect of Time Varying Wake Characteristics Behind Flat Plates
,”
AIAA J.
,
36
(
11
), pp.
2036
2043
.
8.
Sieverding, C. H., Cicatelli, G., Desse, J. M., Meinke, M., and Zunino, P., 1999, “Experimental and Numerical Investigation of Time Varying Wakes Behind Turbine Blades,” Notes on Numerical Fluid Mechanics, 67, Vieweg, Braunschweig/Wiesbaden.
9.
Sieverding
,
C. H.
,
Richard
,
H.
, and
Desse
,
J.-M.
,
2003
, “
Turbine Blade Trailing Edge Flow Characteristics at High Subsonic Outlet Mach Number
,”
ASME J. Turbomach.
,
125
, pp.
298
309
.
10.
Ubaldi, M., and Zunino, P., 1999, “An Experimental Study of the Unsteady Characteristics of the Turbulent Wake of a Turbine Blade,” 4th International Symposium on Engineering Turbulence Modelling and Measurements, Ajaccio.
11.
Ubaldi, M., Zunino, P., Cattanei, A., and Campora, U., 1999, “Effect of Trailing Edge Cooling on Turbine Wake Unsteady Flow Characteristics,” 4th European Tubomachinery Conference, London.
12.
Zunino, P., Ubaldi, M., Cattanei, A., and Campora, U., 2001, “An Experimental Investigation for the Interaction Between Trailing Edge Coolant Jet and Wake,” 3rd European Tubomachinery Conference, Firenze, Italy, pp. 283–294.
13.
Raffel, M., Ho¨fer, F., Kost, C., and Kompenhans, J., 1996, “Experimental Aspects of PIV Measurements of Transonic Flow Fields at a Trailing Edge Model of a Turbine Blade,” 8th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, Portugal.
14.
Carscallen
,
W. E.
,
Currie
,
T. C.
,
Hogg
,
S. I.
, and
Gostelow
,
J. P.
,
1998
, “
Measurement and Computation of Energy Separation in Vortical Wake Flow of a Turbine Blade
,”
ASME J. Turbomach.
,
121
, pp.
703
708
.
15.
Buttsworth
,
D.
, and
Jones
,
T. V.
,
1998
, “
A Fast Response Total Temperature Probe for Unsteady Compressible Flows
,”
ASME J. Eng. Gas Turbines Power
,
120
, pp.
694
701
.
16.
Eckert
,
E. R. G.
, and
Weise
,
W.
,
1943
, “
Messungder Temperaturverteilung auf der Oberfla¨che schnell angestro¨mter Ko¨rper
,”
Forsch. Ing. Wesen
,
13, pp.
246
254
.
17.
Eckert
,
E. R. G.
,
1986
, “
Energy Separation in Fluid Streams
,”
Int. Commun. Heat Mass Transfer
,
13
, pp.
127
143
.
18.
Kurosaka
,
M.
,
Gertz
,
J. B.
,
Graham
,
J. E.
,
Goodman
,
J. R.
,
Sundaram
,
P.
,
Riner
,
W. C.
,
Kuroda
,
H.
, and
Hankey
,
W. L.
,
1987
, “
Energy Separation in aVortex Street
,”
J. Fluid Mech.
,
178
, pp.
1
29
.
19.
Ng
,
W. F.
,
Chakrun
,
W. M.
, and
Kurosaka
,
M.
,
1990
, “
Time Resolved Measurements of Total Temperature and Pressure in the Vortex Street Behind a Cylinder
,”
Phys. Fluids A
,
2
(
6
), pp.
971
978
.
20.
Desse
,
J. M.
,
1990
, “
Instantaneous Density Measurement in Two-Dimensional Gas Flow by High Speed Differential Interferometry
,”
Exp. Fluids
,
9(1/2), pp.
85
91
.
21.
Desse
,
J. M.
,
1997
, “
Recording and Processing of Interferograms by Spectral Characterization of the Interferometric Setup
,”
Exp. Fluids
,
23(4), pp.
265
271
.
22.
Bergh, H., and Tijdeman, H., 1965 “Theoretical and Experimental Results for the Dynamic Response of Pressure Measuring Systems,” NLR-TR-F. 238, 18 pgs.
23.
De´nos
,
R.
, and
Sieverding
,
C. H.
,
1997
, “
Assessment of the Cold Wire Resistance Thermometer for High Speed Turbomachinery Applications
,”
ASME J. Turbomach.
,
119
, pp.
140
148
.
You do not currently have access to this content.