The current demands for high-performance gas turbine engines can be reached by raising combustion temperatures to increase power output. High combustion temperatures create a harsh environment that leads to the consideration of the durability of the combustor and turbine sections. This paper presents a computational study of a flow field that is representative of what occurs in a combustor and how that flow field convects through the first downstream stator vane. The results of this study indicate that the development of the secondary flow field in the turbine is highly dependent on the incoming total pressure profile. The endwall heat transfer is also found to depend strongly on the secondary flow field.

1.
Langston
,
L. S.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
J. Eng. Power
,
102
, pp.
866
874
.
2.
Schwab, J. R., Stabe, R. G., and Whitney, W. J., 1983, “Analytical and Experimental Study of Flow through and Axial Turbine Stage with a Nonuniform Inlet Radial Temperature Profile,” AIAA paper no. 83-1175.
3.
Stabe, R. G., Whitney, W. J., and Moffitt, T. P., 1984, “Performance of High-Work Low-Aspect Ratio Turbine Tested with a Realistic Inlet Radial Temperature Profile,” AIAA paper no. 84-1161.
4.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
,
1989
, “
Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
J. Propul. Power
,
5
, pp.
64
71
.
5.
Munk
,
M.
, and
Prim
,
R. C.
,
1947
, “
On the Multiplicity of Steady Gas Flows Having the Same Streamline Pattern
,”
Proc. Natl. Acad. Sci. U.S.A.
,
33
, pp.
137
141
.
6.
Shang
,
T.
, and
Epstein
,
A. H.
,
1997
, “
Analysis of Hot Streak Effects on Turbine Rotor Heat Load
,”
J. Turbomach.
,
119
, pp.
544
553
.
7.
Hermanson
,
K. S.
, and
Thole
,
K. A.
,
2000
, “
Effect of Inlet Conditions on Endwall Secondary Flows
,”
J. Propul. Power
,
16
, pp.
286
296
.
8.
Blair, M. F., 1974, “An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls,” J. Heat Transfer, pp. 524–529.
9.
Granser, D., and Schulenberg, T., 1990, “Prediction and Measurement of Film Cooling Effectiveness for a First-Stage Turbine Vane Shroud,” ASME paper no. 90-GT-95.
10.
Burd, S. W., and Simon, T. W., “Effects of Slot Bleed Injection over a Contoured Endwall on Nozzle Guide Vane Cooling Performance: Part I: Flow Field Measurements,” ASME paper no. 2000-GT-199.
11.
Burd, S. W., Satterness, C. J., and Simon, T. W., 2000, “Effects of Slot Bleed Injection over a Contoured Endwall on Nozzle Guide Vane Cooling Performance: Part II Thermal Measurements,” ASME paper no. 2000-GT-200.
12.
Oke, R., Simon, T., Burd, S. W., and Vahlberg, R., 2000, “Measurements in a Turbine Cascade Over a Contoured Endwall: Discrete Hole Injection of Bleed Flow,” ASME paper no. 2000-GT-214.
13.
Oke, R., Simon, T., Shih, T. Zhu, B., Lin, Y. L., and Chyu, M., 2001, “Measurements Over a Film-Cooled, Contoured Endwall with Various Coolant Injection Rates,” ASME paper no. 2001-GT-140.
14.
Kost, F., and Nicklas, M., 2001, “Film-Cooled Turbine Endwall in a Transonic Flow Field: Part I—Aerodynamic Measurements,” ASME paper no. 2001-GT-0145.
15.
Nicklas, M., 2001, “Film-Cooled Turbine Endwall in a Transonic Flow Field: Part II—Heat Transfer and Film-Cooling Effectiveness Measurements,” ASME paper no. 2001-GT-0146.
16.
Colban, W. F., Thole, K. A., and Zess, G., 2002, “Combustor-Turbine Interface Studies: Part 1: Endwall Measurements,” ASME paper no. 2002-GT-30526.
17.
Colban, W. F., Lethander, A., T., Thole, K. A., and Zess, G., 2002, “Combustor-Turbine Interface Studies: Part 2: Flow and Thermal Field Measurements,” ASME paper no. 2002-GT-30527.
18.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
, pp.
269
289
.
19.
Yakhot
,
V.
, and
Orszag
,
S.
,
1986
, “
Renormalization Group Analysis of Turbulence: I. Basic Theory
,”
J. Sci. Comput.
,
1
, pp.
1
51
.
20.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
, pp.
537
566
.
21.
Barringer
,
M. D.
,
Richard
,
O. T.
,
Walter
,
J. P.
,
Stitzel
,
S. M.
, and
Thole
,
K. A.
,
2002
, “
Flow Field Simulations of a Gas Turbine Combustor
,”
J. Turbomach.
,
124
, pp.
508
516
.
22.
Soechting, F. O., and Cheung, A., 1999, private communication.
23.
Kang
,
M.
, and
Thole
,
K. A.
,
2000
, “
Flowfield Measurements in the Endwall Region of a Stator Vane
,”
J. Turbomach.
,
122
, pp.
458
466
.
24.
Radomsky
,
R. W.
, and
Thole
,
K. A.
,
2000
, “
Flowfield Measurements for a Highly Turbulent Flow in a Stator Vane Passage
,”
J. Turbomach.
,
122
, pp.
255
262
.
25.
Radomsky
,
R.
, and
Thole
,
K. A.
,
2000
, “
High Freestream Turbulence Effects in the Endwall Leading Edge Region
,”
J. Turbomach.
,
122
, pp.
699
708
.
You do not currently have access to this content.