A first-stage stator vane experiences high heat transfer rates, particularly near the endwall, where strong secondary flows occur. In order to improve numerical predictions of the complex endwall flow at low-speed conditions, benchmark quality experimental data are required. This study documents the flowfield in the endwall region of a stator vane that has been scaled up by a factor of nine while matching an engine exit Reynolds number of Reex=1.2×106. Laser Doppler velocimeter (LDV) measurements of all three components of the mean and fluctuating velocities are presented for several flow planes normal to the turbine vane. Measurements indicate that downstream of the minimum static pressure location on the suction surface of the vane, an attenuated suction side leg of the horseshoe vortex still exists. At this location, the peak turbulent kinetic energy coincides with the center of the passage vortex location. These flowfield measurements were also related to previously reported convective heat transfer coefficients on the endwall showing that high Stanton numbers occur where the passage vortex brings mainstream fluid toward the vane surface. [S0889-504X(00)00803-5]

1.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
, pp.
248
257
.
2.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Power
,
99
, pp.
21
28
.
3.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
, pp.
229
236
.
4.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
,
110
, pp.
862
869
.
5.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
, pp.
1
8
.
6.
Gregory-Smith
,
D. G.
, and
Cleak
,
J. G. E.
,
1992
, “
Secondary Flow Measurements in a Turbine Cascade With High Inlet Turbulence
,”
ASME J. Turbo-mach.
,
110
, pp.
1
8
.
7.
Moore
,
J.
,
Schaffer
,
D. M.
, and
Moore
,
J. G.
,
1987
, “
Reynolds Stresses and Dissipation Mechanisms Downstream of a Turbine Cascade
,”
ASME J. Turbomach.
,
109
, pp.
258
267
.
8.
Bailey
,
D. A.
,
1980
, “
Study of Mean- and Turbulent-Velocity Fields in a Large-Scale Turbine-Vane Passage
,”
ASME J. Eng. Power
,
102
, pp.
88
95
.
9.
Gregory-Smith
,
D. G.
,
Graves
,
C. P.
, and
Walsh
,
J. A.
,
1988
, “
Growth of Secondary Losses and Vorticity in an Axial Turbine Cascade
,”
ASME J. Turbomach.
,
114
, pp.
173
183
.
10.
Boyle
,
R. J.
, and
Russell
,
L. M.
,
1990
, “
Experimental Determination of Stator Endwall Heat Transfer
,”
ASME J. Turbomach.
,
112
, pp.
547
558
.
11.
Gaugler
,
R. E.
, and
Russell
,
L. M.
,
1984
, “
Comparison of Visualized Turbine Endwall Secondary Flows and Measured Heat Transfer Patterns
,”
ASME J. Eng. Gas Turbines Power
,
106
, pp.
168
172
.
12.
York
,
R. E.
,
Hylton
,
L. D.
, and
Mihelc
,
M. S.
,
1984
, “
An Experimental Investigation of Endwall Heat Transfer and Aerodynamics in a Linear Vane Cascade
,”
ASME J. Turbomach.
,
106
, pp.
159
167
.
13.
Kang
,
M.
,
Kohli
,
A.
, and
Thole
,
K. A.
,
1999
, “
Heat Transfer and Flowfield Measurements in the Leading Edge Region of a Stator Vane Endwall
,”
ASME J. Turbomach.
,
121
, pp.
558
568
.
14.
Radomsky
,
R. W.
, and
Thole
,
K. A.
,
2000
, “
Flowfield Measurements for a Highly Turbulent Flow Around a Stator Vane
,”
ASME J. Turbomach.
,
122
, pp.
255
262
.
15.
FLUENT/UNS User’s Guide, Vers. 4.2, Fluent, Inc., Lebanon, NH.
16.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
, pp.
3
17
.
You do not currently have access to this content.