Abstract

This research examines the microstructural, mechanical, and tribological characteristics of an AA7075 alloy composite reinforced with high-entropy alloy (HEA) particulates, synthesized through advanced stir-squeeze casting techniques. To enhance grain refinement and optimize mechanical properties, the composite undergoes T6 heat treatment. Advanced characterization methods, including optical microscopy, scanning electron microscopy (SEM), and optical profilometry, are utilized to investigate microstructural features and worn surface morphology. Microstructural analysis reveals a homogeneous distribution of HEA particles within the AA7075 matrix, promoting a refined grain structure. Mechanical assessments indicate improvements in microhardness and compressive strength with the increasing HEA content. Tribological analysis shows that the wear-rate of the composite decreases with the increase in HEA particles, reaching a maximum reduction with 8 wt% HEA reinforcement. SEM observations of the worn surfaces reveal features such as pronounced grooves, adhesive wear, ploughing effects, wear debris, and microcracking.

References

1.
Rao
,
T. B.
,
2021
, “
Microstructural, Mechanical, and Wear Properties Characterization and Strengthening Mechanisms of Al7075/SiCnp Composites Processed Through Ultrasonic Cavitation Assisted Stir-Casting
,”
Mater. Sci. Eng. A
,
805
(
9
), pp.
140553
140564
.
2.
Manikandan
,
R.
,
Arjunan
,
T. V.
, and
Nath O. P.
,
A. R.
,
2020
, “
Studies on Micro Structural Characteristics, Mechanical and Tribological Behaviours of Boron Carbide and Cow Dung Ash Reinforced Aluminium (Al 7075) Hybrid Metal Matrix Composite
,”
Compos. Part B: Eng.
,
183
(
5
), pp.
107668
107681
.
3.
Chithra
,
N. V.
,
Karuppasamy
,
R.
,
Manickaraj
,
K.
, and
Ramakrishnan
,
T.
,
2024
, “
Effect of Reinforcement Addition on Mechanical Behavior of Al MMC—A Critical Review
,”
J. Environ. Nanotechnol.
,
13
(
2
), pp.
65
79
.
4.
Kim
,
C. S.
,
Sohn
,
I.
,
Nezafati
,
M.
,
Ferguson
,
J. B.
,
Schultz
,
B. F.
,
Bajestani-Gohari
,
Z.
,
Rohatgi
,
P. K.
, and
Cho
,
K.
,
2013
, “
Prediction Models for the Yield Strength of Particle-Reinforced Unimodal Pure Magnesium (Mg) Metal Matrix Nanocomposites (MMNCs)
,”
J. Mater. Sci.
,
48
(
12
), pp.
4191
4204
.
5.
Nithyanandhan
,
T.
,
Sivaraman
,
P.
,
Manickaraj
,
K.
,
Mohan Raj
,
N.
,
Sri Pragash
,
M.
, and
Tharun
,
A.
,
2022
, “
Tribological Behaviour of Aluminium 6061 Reinforced With Graphite and Chicken Bone Ash by Using Stir Casting
,”
Int. J. Vehic. Struct. Syst.
,
14
(
7
), pp.
849
854
.
6.
Hasan
,
M. S.
,
Wong
,
T.
,
Rohatgi
,
P. K.
, and
Nosonovsky
,
M.
,
2022
, “
Analysis of the Friction and Wear of Graphene Reinforced Aluminum Metal Matrix Composites Using Machine Learning Models
,”
Tribol. Int.
,
170
(
3
), pp.
107527
107538
.
7.
Kumar
,
A.
,
Singh
,
A.
, and
Suhane
,
A.
,
2022
, “
Synthesis and Characterization of a Novel CoCrFeMnNi High-Entropy Alloy-Reinforced AA6082 Composite
,”
J. Mater. Res.
,
37
(
18
), pp.
2961
2978
.
8.
Subramaniam
,
B.
,
Natarajan
,
B.
,
Kaliyaperumal
,
B.
, and
Chelladurai
,
S. J. S.
,
2018
, “
Investigation on Mechanical Properties of Aluminium 7075—Boron Carbide—Coconut Shell Fly Ash Reinforced Hybrid Metal Matrix Composites
,”
China Foundry
,
15
(
6
), pp.
449
456
.
9.
Lovevanshi
,
B. S.
,
Soni
,
P. K.
, and
Dixit
,
S.
,
2024
, “
Experimental Investigations on the Development of Hybrid Metal Matrix Composite of Al7075 on Microstructural, Mechanical, and Dry Sliding Aspects
,”
ASME J. Tribol.
,
146
(
5
), p.
051701
.
10.
Rao
,
T. B.
,
2018
, “
An Experimental Investigation on Mechanical and Wear Properties of Al7075/SiCp Composites: Effect of SiC Content and Particle Size
,”
ASME J. Tribol.
,
140
(
3
), p.
031601
. doi.org/10.1115/1.4037845
11.
Soy
,
U.
,
Ficici
,
F.
, and
Demir
,
A.
,
2012
, “
Evaluation of the Taguchi Method for Wear Behavior of Al/SiC/B4C Composites
,”
J. Compos. Mater.
,
46
(
7
), pp.
851
859
.
12.
Al-Qutub
,
A. M.
,
Allam
,
I. M.
, and
Qureshi
,
T. W.
,
2006
, “
Effect of Sub-Micron Al2O3 Concentration on Dry Wear Properties of 6061 Aluminum Based Composite
,”
J. Mater. Process. Technol.
,
172
(
3
), pp.
327
331
.
13.
Kumar
,
A.
,
Rana
,
R. S.
, and
Purohit
,
R.
,
2022
, “
Microstructure Evolution, Mechanical Properties, and Fractography of AA7068/ Si3N4nanocomposite Fabricated Thorough Ultrasonic-Assisted Stir Casting Advanced With Bottom Pouring Technique
,”
Mater. Res. Express
,
9
(
1
), pp.
562
574
.
14.
Dhulipalla
,
A.
,
Uday Kumar
,
B.
,
Akhil
,
V.
,
Zhang
,
J.
,
Lu
,
Z.
,
Park
,
H. Y.
,
Jung
,
Y. G.
, and
Zhang
,
J.
,
2020
, “
Synthesis and Machining Characteristics of Novel TiC Ceramic and MoS2 Soft Particulate Reinforced Aluminium Alloy 7075 Matrix Composites
,”
Manuf. Lett.
,
24
(
2
), pp.
82
86
.
15.
Kumar
,
M. S.
,
Vasumathi
,
M.
,
Begum
,
S. R.
,
Luminita
,
S. M.
,
Vlase
,
S.
, and
Pruncu
,
C. I.
,
2021
, “
Influence of B4C and Industrial Waste Fly Ash Reinforcement Particles on the Micro Structural Characteristics and Mechanical Behavior of Aluminium (Al–Mg–Si-T6) Hybrid Metal Matrix Composite
,”
J. Mater. Res. Technol.
,
15
(
3
), pp.
1201
1216
.
16.
Tejyan
,
S.
,
Lal
,
C.
,
Ror
,
C. K.
, and
Singh
,
V.
,
2024
, “
Influence of Marble Waste Reinforcement on Mechanical Properties and Sliding Wear Behavior of an Aluminium Alloy Metal Matrix Composite
,”
J. Eng. Res.
,
2024
(
7
), p.
1
14
.
17.
Chourasiya
,
A.
, and
Krishna
,
C. M.
,
2024
, “
Mechanical and Microstructure Behavior of AA7050 Metal Matrix Composite Reinforced With Tio2/Bn
,”
Int. J. Met.
,
24
(
2
), pp.
376
387
.
18.
Sureshkumar
,
P.
, and
Uvaraja
,
V. C.
,
2018
, “
Effect of Ceramic and Metallic Reinforcement on Mechanical, Corrosion, and Tribological Behavior of Aluminum Composite by Adopting Design of Experiment Through Taguchi Technique
,”
ASME J. Tribol.
,
140
(
5
), p.
052301
.
19.
Kumar
,
S.
,
Dixit
,
G.
, and
Dixit
,
S.
,
2023
, “
Investigating Microstructural and Mechanical Behavior of Stir-Squeeze Cast TiO2–SiC/Al6082 Bimodal Hybrid Composites
,”
J. Mater. Res. Technol.
,
26
(
1
), pp.
150
163
.
20.
Idusuyi
,
N.
, and
Olayinka
,
J. I.
,
2019
, “
Dry Sliding Wear Characteristics of Aluminium Metal Matrix Composites: A Brief Overview
,”
J. Mater. Res. Technol.
,
8
(
3
), pp.
3338
3346
.
21.
Du
,
L. M.
,
Lan
,
L. W.
,
Zhu
,
S.
,
Yang
,
H. J.
,
Shi
,
X. H.
,
Liaw
,
P. K.
, and
Qiao
,
J. W.
,
2019
, “
Effects of Temperature on the Tribological Behavior of Al 0.25 CoCrFeNi High-Entropy Alloy
,”
J. Mater. Sci. Technol.
,
35
(
5
), pp.
917
925
.
22.
Polat
,
S.
,
Sun
,
Y.
, and
Cevik
,
E.
,
2021
, “
Wear Behavior of TiB2/GNPs and B4C/GNPs Reinforced AA6061 Matrix Composites
,”
ASME J. Tribol.
,
143
(
11
), p.
111701
.
23.
Gupta
,
R.
,
Chaudhari
,
G. P.
, and
Daniel
,
B. S. S.
,
2018
, “
Strengthening Mechanisms in Ultrasonically Processed Aluminium Matrix Composite With In-Situ Al3Ti by Salt Addition
,”
Compos. Part B: Eng.
,
140
(
8
), pp.
27
34
.
24.
Verma
,
P. K.
, and
Singh
,
A.
,
2023
, “
Microstructure Evolution and Mechanical Properties of Aluminium Matrix Composites Reinforced With CoMoMnNiV High-Entropy Alloy
,”
Int. J. Met.
,
24
(
2
), pp.
940
957
.
25.
Verma
,
P. K.
,
Singh
,
A.
, and
Kumar
,
A.
,
2024
, “
Microstructure Evolution and Magnetic Characteristics of a Novel High Entropy Alloy Produced by Mechanical Alloying and Spark Plasma Sintering
,”
Intermetallics
,
175
(
3
), pp.
108488
108499
.
26.
Verma
,
P. K.
,
Singh
,
A.
, and
Kumar
,
A.
,
2024
, “
Microstructure Characterization and Phase Evolution of Equiatomic AlCoMoFeNi High Entropy Alloy Synthesized by Mechanical Alloying
,”
Mater. Chem. Phys.
,
318
(
2
), pp.
129325
129332
.
27.
Kumar
,
A.
,
Singh
,
A.
, and
Suhane
,
A.
,
2022
, “
Mechanically Alloyed High Entropy Alloys: Existing Challenges and Opportunities
,”
J. Mater. Res. Technol.
,
17
(
1
), pp.
2431
2456
.
28.
Yang
,
X.
,
Dong
,
P.
,
Yan
,
Z.
,
Cheng
,
B.
,
Zhai
,
X.
,
Chen
,
H.
,
Zhang
,
H.
, and
Wang
,
W.
,
2020
, “
AlCoCrFeNi High-Entropy Alloy Particle Reinforced 5083Al Matrix Composites With Fine Grain Structure Fabricated by Submerged Friction Stir Processing
,”
J. Alloys Compd.
,
836
(
20
), pp.
155411
155421
.
29.
Yuan
,
M.
,
Zhang
,
D. C.
,
Tan
,
C. G.
,
Luo
,
Z. C.
,
Mao
,
Y. F.
, and
Lin
,
J. G.
,
2014
, “
Microstructure and Properties of Al-Based Metal Matrix Composites Reinforced by Al60Cu20Ti15Zr5 Glassy Particles by High Pressure Hot Pressing Consolidation
,”
Mater. Sci. Eng. A
,
590
(
2
), pp.
301
306
.
30.
Li
,
Q.
,
Bao
,
X.
,
Zhao
,
S.
,
Zhu
,
Y.
,
Lan
,
Y.
,
Feng
,
X.
, and
Zhang
,
Q.
,
2021
, “
The Influence of AlFeNiCrCoTi High-Entropy Alloy on Microstructure, Mechanical Properties and Tribological Behaviors of Aluminum Matrix Composites
,”
Int. J. Met.
,
15
(
1
), pp.
281
291
.
31.
Lu
,
T.
,
Scudino
,
S.
,
Chen
,
W.
,
Wang
,
P.
,
Li
,
D.
,
Mao
,
M.
,
Kang
,
L.
,
Liu
,
Y.
, and
Fu
,
Z.
,
2018
, “
The Influence of Nanocrystalline CoNiFeAl0.4Ti0.6Cr0.5 High-Entropy Alloy Particles Addition on Microstructure and Mechanical Properties of SiCp/7075Al Composites
,”
Mater. Sci. Eng. A
,
726
(
17
), pp.
126
136
.
32.
Li
,
P.
,
Tong
,
Y.
,
Wang
,
X.
,
Sato
,
Y. S.
, and
Dong
,
H.
,
2023
, “
Microstructures and Mechanical Properties of AlCoCrFeNi2.1/6061-T6 Aluminum-Matrix Composites Prepared by Friction Stir Processing
,”
Mater. Sci. Eng. A
,
863
(
22
), pp.
144544
144553
.
33.
Ma
,
Z.
,
Yuan
,
Z.
,
Ma
,
X.
,
Wang
,
K.
,
Li
,
S.
, and
Zhang
,
X.
,
2022
, “
Interface Characteristics and Mechanical Properties of Al0.6CoCrFeNi/5052Al Matrix Composites Fabricated via Vacuum Hot-Pressing Sintering and Annealing
,”
Mater. Sci. Eng. A
,
859
(
10
), pp.
144234
144247
.
34.
Yuan
,
Z.
,
Tian
,
W.
,
Li
,
F.
,
Fu
,
Q.
,
Hu
,
Y.
, and
Wang
,
X.
,
2019
, “
Microstructure and Properties of High-Entropy Alloy Reinforced Aluminum Matrix Composites by Spark Plasma Sintering
,”
J. Alloys Compd.
,
806
(
2019
), pp.
901
908
.
35.
Verma
,
P. K.
, and
Singh
,
A.
,
2024
, “
Mechanical and Dry Sliding Tribological Characteristics of Aluminium Matrix Composite Reinforced With High Entropy Alloy Particles
,”
Tribol. Int.
,
191
(
2023
), pp.
109055
109071
.
36.
Kumar
,
A.
,
Singh
,
A.
,
Suhane
,
A.
,
Singh
,
A. K.
, and
Verma
,
P. K.
,
2023
, “
Influence of Cantor Alloy Particles on Microstructure, and Wear Behavior of Aluminum Metal Matrix Composite
,”
Int. J. Met.
,
24
(
3
), pp.
1743
1752
. http://dx.doi..org/10.1007/s40962-023-01099-2
37.
Venkatesan
,
S.
, and
Anthony Xavior
,
M.
,
2018
, “
Tensile Behavior of Aluminum Alloy (AA7050) Metal Matrix Composite Reinforced With Graphene Fabricated by Stir and Squeeze Cast Processes
,”
Sci. Technol. Mater.
,
18
(
3
), pp.
235
247
.
38.
Suresh
,
S.
,
Gowd
,
G. H.
, and
Deva Kumar
,
M. L. S.
,
2019
, “
Experimental Investigation on Mechanical Properties of Al 7075/Al2O3/Mg NMMC’s by Stir Casting Method
,”
Sadhana—Acad. Proc. Eng. Sci.
,
44
(
2
), pp.
556
574
.
39.
Sharma
,
A.
, and
Mishra
,
P.
,
2022
, “
Effect of T6, RRA and Nano Chromium Carbide Content on Microstructure and Mechanical Properties of AA7075-Cr3C2 Nanocomposite
,”
Part. Sci. Technol.
,
40
(
8
), pp.
1017
1032
.
40.
Kumar
,
A.
,
Singh
,
A.
,
Suhane
,
A.
,
Singh
,
A. K.
, and
Verma
,
P. K.
,
2023
, “
Artificial Age Hardening Behavior of a Squeeze Cast CoCrFeMnNi High Entropy Alloy Reinforced 6082-Aluminium Matrix Composite
,”
Mater. Charact.
,
206
(
5
), pp.
113401
113414
.
41.
Pandian
,
V.
, and
Kannan
,
S.
,
2022
, “
Effect of High Entropy Particle on Aerospace-Grade Aluminium Composite Developed Through Combined Mechanical Supersonic Vibration and Squeeze Infiltration Technique
,”
J. Manuf. Process.
,
74
(
21
), pp.
383
399
.
42.
Chak
,
V.
, and
Chattopadhyay
,
H.
,
2020
, “
Fabrication and Heat Treatment of Graphene Nanoplatelets Reinforced Aluminium Nanocomposites
,”
Mater. Sci. Eng. A
,
791
(
20
), pp.
139657
139667
.
43.
Huang
,
X.
,
Zhang
,
J.
,
Miao
,
J.
,
Cinkilic
,
E.
,
Wang
,
Q.
, and
Luo
,
A. A.
,
2022
, “
On the Interactions Between Molten Aluminum and High Entropy Alloy Particles During Aluminum Matrix Composite Processing
,”
J. Alloys Compd.
,
895
(
2
), pp.
162712
162721
.
44.
Yuan
,
Z.
,
Tian
,
W.
,
Li
,
F.
,
Fu
,
Q.
,
Wang
,
X.
,
Qian
,
W.
, and
An
,
W.
,
2020
, “
Effect of Heat Treatment on the Interface of High-Entropy Alloy Particles Reinforced Aluminum Matrix Composites
,”
J. Alloys Compd.
,
822
(
2020
), pp.
153658
163571
.
45.
Mavi
,
A.
,
Kaplan
,
Y.
, and
Aksoz
,
S.
,
2021
, “
Effects of Aging and Deep Cryogenic Treatment on Wear Behavior of Al7075 Alloy
,”
ASME J. Tribol.
,
143
(
12
), p.
121702
.
46.
Liu
,
P.
,
Hu
,
J. y.
,
Li
,
H. x.
,
Sun
,
S. y.
, and
Zhang
,
Y. b.
,
2020
, “
Effect of Heat Treatment on Microstructure, Hardness and Corrosion Resistance of 7075 Al Alloys Fabricated by SLM
,”
J. Manuf. Process.
,
60
(
20
), pp.
578
585
.
47.
Akhlaghi
,
P.
,
Amirjan
,
M.
, and
Parvin
,
N.
,
2021
, “
The Effect of Processing Parameters and Heat-Treatment on the Microstructure and Mechanical Properties of PM CoCrFeMnNiTi0.1 High-Entropy Alloy
,”
Mater. Chem. Phys.
,
257
(
6
), pp.
123722
123734
.
48.
Verma
,
P. K.
,
Singh
,
A.
, and
Kumar
,
A.
,
2023
, “
Tribological and Mechanical Properties of Al7075 Metal Matrix Composite Reinforced With CoMoMnNiV High Entropy Alloy Particles
,”
NanoWorld J.
,
9
(
1
), pp.
596
600
.
49.
Liu
,
H.
,
Li
,
X.
,
Liu
,
J.
,
Gao
,
W.
,
Du
,
X.
, and
Hao
,
J.
,
2021
, “
Microstructural Evolution and Properties of Dual-Layer CoCrFeMnTi0.2 High-Entropy Alloy Coating Fabricated by Laser Cladding
,”
Opt. Laser Technol.
,
134
(
7
), pp.
106646
106657
.
You do not currently have access to this content.