Abstract

The present work deals with the tribological evaluation of castor-oil-derived lithium grease having variable concentrations of pristine and chemically functionalized MoS2 and graphene nanosheets. The MoS2 and graphene oxide nanosheets were synthesized by hydrothermal and Hummer's method, respectively. The tribological performance of castor grease with and without two-dimensional (2D) lamellar nanomaterials was evaluated using a four-ball tribo-tester as per ASTM standards. The graphene-based lamellar nanomaterials in castor grease significantly improved the tribological properties by decreasing friction and wear. The optimized concentration of MoS2-ODT, MoS2, GO-ODA, GO, and rGO nanomaterials in castor grease conserved the frictional energy losses by 19%, 34%, 35%, 54%, and 56%, respectively. Among all samples, the rGO nanosheets in castor grease showed a maximum reduction in friction and wear. The spectroscopic analysis of worn surfaces suggested the establishment of graphene-based tribo-film, which reduced the direct interaction of tribo-interfaces and minimized the friction and wear.

References

1.
Mannekote
,
J. K.
, and
Kailas
,
S. V.
,
2011
, “
Experimental Investigation of Coconut and Palm Oils as Lubricants in Four-Stroke Engine
,”
Tribol. Online
,
6
(
1
), pp.
76
82
.
2.
Kumar
,
H.
, and
Harsha
,
A. P.
,
2021
, “
Enhanced Lubrication Ability of Polyalphaolefin and Polypropylene Glycol by COOH-Functionalized Multiwalled Carbon Nanotubes as an Additive
,”
J. Mater. Eng. Perform.
,
30
(
2
), pp.
1075
1089
.
3.
Kumar
,
H.
, and
Harsha
,
A. P.
,
2021
, “
Taguchi Optimization of Various Parameters for Tribological Performance of Polyalphaolefins Based Nanolubricants
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
235
(
6
), pp.
1262
1280
.
4.
Qi
,
S.
,
Geng
,
Z.
,
Lu
,
Z.
,
Zhang
,
G.
, and
Wu
,
Z.
,
2020
, “
Synergistic Lubricating Behaviors of 3D Graphene and 2D Hexagonal Boron Nitride Dispersed in PAO4 for Steel/Steel Contact
,”
Adv. Mater. Interfaces
,
7
(
8
), p.
1901893
.
5.
Florea
,
O.
,
Luca
,
M.
,
Constantinescu
,
A.
, and
Florescu
,
D.
,
2003
, “
The Influence of Lubricating Fluid Type on the Properties of Biodegradable Greases
,”
J. Synth. Lubr.
,
19
(
4
), pp.
303
313
.
6.
Mannekote
,
J. K.
,
Kailas
,
S. V.
,
Venkatesh
,
K.
, and
Kathyayini
,
N.
,
2018
, “
Environmentally Friendly Functional Fluids From Renewable and Sustainable Sources—A Review
,”
Renew. Sustain. Energy Rev.
,
81
(
1
), pp.
1787
1801
.
7.
Boyde
,
S.
,
2002
, “
Green Lubricants. Environmental Benefits and Impacts of Lubrication
,”
Green Chem.
,
4
(
4
), pp.
293
307
.
8.
Rawat
,
S. S.
, and
Harsha
,
A. P.
,
2021
, “Recent Progress in Vegetable Oil-Based Lubricants for Tribological Applications,”
Tribology and Sustainability
,
J. K.
Katiyar
,
M. I. U.
Haq
,
A.
Raina
,
S.
Jayalakshmi
, and
R. A.
Singh
, eds.,
CRC Press, Taylor & Francis Group
,
Boca Raton, FL
, pp.
115
142
.
9.
Joseph
,
P. V.
,
Saxena
,
D.
, and
Sharma
,
D. K.
,
2007
, “
Study of Some Non-edible Vegetable Oils of Indian Origin for Lubricant Application
,”
J. Synth. Lubr.
,
24
(
4
), pp.
181
197
.
10.
Mobarak
,
H. M.
,
Mohamad
,
E. N.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Mahmud
,
K. A. H. A.
,
Habibullah
,
M.
, and
Ashraful
,
A. M.
,
2014
, “
The Prospects of Biolubricants as Alternatives in Automotive Applications
,”
Renew. Sustain. Energy Rev.
,
33
(
5
), pp.
34
43
.
11.
Syahir
,
A. Z.
,
Zulkifli
,
N. W. M.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Alabdulkarem
,
A.
,
Gulzar
,
M.
,
Khuong
,
L. S.
, and
Harith
,
M. H.
,
2017
, “
A Review on Bio-Based Lubricants and Their Applications
,”
J. Clean. Prod.
,
168
(
12
), pp.
997
1016
.
12.
Awale
,
A. S.
,
Vashista
,
M.
,
Zaheer
,
M.
, and
Yusufzai
,
K.
,
2021
, “
Application of Eco-friendly Lubricants in Sustainable Grinding of Die Steel
,”
Mater. Manuf. Process.
,
36
(
6
), pp.
702
712
.
13.
Bhaumik
,
S.
,
Kamaraj
,
M.
, and
Paleu
,
V.
,
2021
, “
Tribological Analyses of a New Optimized Gearbox Biodegradable Lubricant Blended With Reduced Graphene Oxide Nanoparticles
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
235
(
5
), pp.
901
915
.
14.
Nagabhooshanam
,
N.
,
Baskar
,
S.
,
Prabhu
,
T. R.
, and
Arumugam
,
S.
,
2020
, “
Evaluation of Tribological Characteristics of Nano Zirconia Dispersed Biodegradable Canola Oil Methyl Ester Metalworking Fluid
,”
Tribol. Int.
,
151
(
11
), p.
106510
.
15.
Sajeeb
,
A.
, and
Rajendrakumar
,
P. K.
,
2020
, “
Tribological Assessment of Vegetable Oil Based CeO2/CuO Hybrid Nano-Lubricant
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
234
(
12
), pp.
1940
1956
.
16.
Talib
,
N.
,
Nasir
,
R. M.
, and
Rahim
,
E. A.
,
2017
, “
Tribological Behaviour of Modified Jatropha Oil by Mixing Hexagonal Boron Nitride Nanoparticles as a Bio-based Lubricant for Machining Processes
,”
J. Clean. Prod.
,
147
(
3
), pp.
360
378
.
17.
Yu
,
R.
,
Liu
,
J.
, and
Zhou
,
Y.
,
2019
, “
Experimental Study on Tribological Property of MoS2 Nanoparticle in Castor Oil
,”
ASME J. Tribol.
,
141
(
10
), p.
102001
.
18.
Bhaumik
,
S.
,
Maggirwar
,
R.
,
Datta
,
S.
, and
Pathak
,
S. D.
,
2018
, “
Analyses of Anti-Wear and Extreme Pressure Properties of Castor Oil With Zinc Oxide Nano Friction Modifiers
,”
Appl. Surf. Sci.
,
449
(
8
), pp.
277
286
.
19.
Gupta
,
R. N.
, and
Harsha
,
A. P.
,
2018
, “
Tribological Evaluation of Calcium - Copper – Titanate/Cerium Oxide – Based Nanolubricants in Sliding Contact
,”
Lubr. Sci.
,
30
(
4
), pp.
175
187
.
20.
Ni
,
J.
,
Feng
,
G.
,
Meng
,
Z.
,
Hong
,
T.
,
Chen
,
Y.
, and
Zheng
,
X.
,
2018
, “
Reinforced Lubrication of Vegetable Oils With Graphene Additive in Tapping ADC12 Aluminum Alloy
,”
Int. J. Adv. Manuf. Technol.
,
94
(
1
), pp.
1031
1040
.
21.
Rawat
,
S. S.
, and
Harsha
,
A. P.
,
2019
, “Current and Future Trends in Grease Lubrication,”
Automotive Tribology
,
K. J. K. S.
Bhattacharya
,
V. K
Patel
, and
V.
Kumar
, eds.,
Springer Nature
,
Singapore
, pp.
147
182
.
22.
Kumar
,
N.
,
Saini
,
V.
, and
Bijwe
,
J.
,
2020
, “
Tribological Investigations of Nano and Micro-Sized Graphite Particles as an Additive in Lithium-Based Grease
,”
Tribol. Lett.
,
68
(
4
), pp.
1
13
.
23.
Mohamed
,
A.
,
Tirth
,
V.
, and
Kamel
,
B. M.
,
2020
, “
Tribological Characterization and Rheology of Hybrid Calcium Grease With Graphene Nanosheets and Multi-walled Carbon Nanotubes as Additives
,”
J. Mater. Res. Technol.
,
9
(
3
), pp.
6178
6185
.
24.
Rawat
,
S. S.
,
Harsha
,
A. P.
,
Das
,
S.
, and
Deepak
,
A. P.
,
2020
, “
Effect of CuO and ZnO Nano-Additives on the Tribological Performance of Paraffin Oil–Based Lithium Grease
,”
Tribol. Trans.
,
63
(
1
), pp.
90
100
.
25.
Shu
,
J.
,
Harris
,
K.
,
Munavirov
,
B.
,
Westbroek
,
R.
,
Leckner
,
J.
, and
Glavatskih
,
S.
,
2018
, “
Tribology of Polypropylene and Li-Complex Greases With ZDDP and MoDTC Additives
,”
Tribol. Int.
,
118
, pp.
189
195
.
26.
Abdulbari
,
H. A.
, and
Zuhan
,
N.
,
2018
, “
Grease Formulation From Palm Oil Industry Wastes
,”
Waste Biomass Valorization
,
9
(
12
), pp.
2447
2457
.
27.
Panchal
,
T.
,
Chauhan
,
D.
,
Thomas
,
M.
, and
Patel
,
J.
,
2015
, “
Bio Based Grease A Value Added Product From Renewable Resources
,”
Ind. Crops Prod.
,
63
(
1
), pp.
48
52
.
28.
Liu
,
Z.
,
Biresaw
,
G.
,
Biswas
,
A.
, and
Cheng
,
H. N.
,
2018
, “
Effect of Polysoap on the Physical and Tribological Properties of Soybean Oil-Based Grease
,”
J. Am. Oil Chem. Soc.
,
95
(
6
), pp.
629
634
.
29.
Gallego
,
R.
,
Cidade
,
T.
,
Sánchez
,
R.
,
Valencia
,
C.
, and
Franco
,
J. M.
,
2016
, “
Tribological Behaviour of Novel Chemically Modified Biopolymer-Thickened Lubricating Greases Investigated in a Steel—Steel Rotating Ball-on-Three Plates Tribology Cell
,”
Tribiology Int.
,
94
(
9
), pp.
652
660
.
30.
Rawat
,
S. S.
,
Harsha
,
A. P.
, and
Khatri
,
O. P.
,
2021
, “
Synergistic Effect of Binary Systems of Nanostructured MoS2/SiO2 and GO/SiO2 as Additives to Coconut Oil-Derived Grease: Enhancement of Physicochemical and Lubrication Properties
,”
Lubr. Sci.
,
33
(
5
), pp.
290
307
.
31.
Rawat
,
S. S.
,
Harsha
,
A. P.
,
Agarwal
,
D. P.
,
Kumari
,
S.
, and
Khatri
,
O. P.
,
2019
, “
Pristine and Alkylated MoS2 Nanosheets for Enhancement of Tribological Performance of Paraffin Grease Under Boundary Lubrication Regime
,”
ASME J. Tribol.
,
141
(
7
), p.
072102
.
32.
Kumari
,
S.
,
Mungse
,
H. P.
,
Gusain
,
R.
,
Kumar
,
N.
,
Sugimura
,
H.
, and
Khatri
,
O. P.
,
2017
, “
Octadecanethiol-Grafted Molybdenum Disulfide Nanosheets as Oil-Dispersible Additive for Reduction of Friction and Wear
,”
FlatChem
,
3
(
6
), pp.
16
25
.
33.
Rawat
,
S. S.
,
Harsha
,
A. P.
,
Khatri
,
O. P.
, and
Wäsche
,
R.
,
2021
, “
Pristine, Reduced, and Alkylated Graphene Oxide as Additives to Paraffin Grease for Enhancement of Tribological Properties
,”
ASME J. Tribol.
,
143
(
2
), p.
021903
.
34.
Rawat
,
S. S.
,
Harsha
,
A. P.
, and
Deepak
,
A. P.
,
2018
, “
Tribological Performance of Paraffin Grease With Silica Nanoparticles as an Additive
,”
Appl. Nanosci.
,
9
(
3
), pp.
305
315
.
35.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1978
, “Minimum Film Thickness in Elliptical Contacts for Different Regimes of Fluid-Film Lubrication,” NASA Technical Paper No. 1342 (10).
36.
Kanazawa
,
Y.
,
Sayles
,
R. S.
, and
Kadiric
,
A.
,
2017
, “
Film Formation and Friction in Grease Lubricated Rolling-Sliding Non-Conformal Contacts
,”
Tribol. Int.
,
109
, pp.
505
518
.
37.
Rawat
,
S. S.
,
Harsha
,
A. P.
,
Chouhan
,
A.
, and
Khatri
,
O. P.
,
2020
, “
Effect of Graphene-Based Nanoadditives on the Tribological and Rheological Performance of Paraffin Grease
,”
J. Mater. Eng. Perform.
,
29
(
4
), pp.
2235
2247
.
38.
Kumari
,
S.
,
Chouhan
,
A.
,
Sharma
,
O. P.
,
Kuriakose
,
S.
,
Tawfik
,
S. A.
,
Spencer
,
M. J. S.
,
Walia
,
S.
,
Sugimura
,
H.
, and
Khatri
,
O. P.
,
2020
, “
Structural-Defect-Mediated Grafting of Alkylamine on Few-Layer MoS2 and Its Potential for Enhancement of Tribological Properties
,”
ACS Appl. Mater. Interfaces
,
12
(
27
), pp.
30720
30730
.
39.
Gupta
,
R. N.
, and
Harsha
,
A. P.
,
2018
, “
Antiwear and Extreme Pressure Performance of Castor Oil With Nano-Additives
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
232
(
9
), pp.
1055
1067
.
40.
Chen
,
J.
,
2010
, “
Tribological Properties of Polytetrafluoroethylene, Nano-Titanium Dioxide, and Nano-Silicon Dioxide as Additives in Mixed Oil-Based Titanium Complex Grease
,”
Tribol. Lett.
,
38
(
3
), pp.
217
224
.
41.
Kumar
,
H.
, and
Harsha
,
A. P.
,
2021
, “
Augmentation in Tribological Performance of Polyalphaolefins by COOH-Functionalized Multiwalled Carbon Nanotubes as an Additive in Boundary Lubrication Conditions
,”
ASME J. Tribol.
,
143
(
10
), p.
102202
.
42.
Bapat
,
S.
, and
Malshe
,
A. P.
,
2020
, “
Understanding the Fundamentals of the Texture and Tribofilm Evolution
,”
Procedia Manuf.
,
48
, pp.
223
229
.
43.
Kumar
,
H.
, and
Harsha
,
A. P.
,
2021
, “
Influence of Oleic Acid–Treated LaF3 Nanoparticles as an Additive on Extreme Pressure Properties of Various Grades of Polyalphaolefins
,”
Tribol. Trans.
,
65
(
1
), pp.
96
113
.
44.
Menezes
,
P. L.
,
Ingole
,
S. P.
,
Nosonovsky
,
M.
,
Kailas
,
S. V.
, and
Lovell
,
M. R.
,
2013
,
Tribology for Scientists and Engineers
,
Springer
,
New York
.
45.
Vengudusamy
,
B.
,
Kuhn
,
M.
,
Rankl
,
M.
, and
Spallek
,
R.
,
2016
, “
Film Forming Behavior of Greases Under Starved and Fully Flooded EHL Conditions
,”
Tribol. Trans.
,
59
(
1
), pp.
62
71
.
46.
Rawat
,
S. S.
, and
Harsha
,
A. P.
,
2021
, “Exploration of Bio-greases for Tribological Applications,”
Tribology, Lubrication, and Surface Engineering: Research and Applications
,
C.
Pruncu
, and
A.
Aherwar
, eds.,
CRC press, Taylor & Francis Group
,
Boca Raton, FL
, pp.
75
101
.
47.
Ogunniyi
,
D. S.
,
2006
, “
Castor Oil: A Vital Industrial Raw Material
,”
Bioresour. Technol.
,
97
(
9
), pp.
1086
1091
.
48.
Hsu
,
S. M.
, and
Gates
,
R. S.
,
2005
, “
Boundary Lubricating Films: Formation and Lubrication Mechanism
,”
Tribol. Int.
,
38
(
3
), pp.
305
312
.
49.
Fox
,
N. J.
, and
Stachowiak
,
G. W.
,
2007
, “
Vegetable Oil-Based Lubricants—A Review of Oxidation
,”
Tribol. Int.
,
40
(
7
), pp.
1035
1046
.
50.
Sahoo
,
R. R.
, and
Biswas
,
S. K.
,
2009
, “
Frictional Response of Fatty Acids on Steel
,”
J. Colloid Interface Sci.
,
333
(
2
), pp.
707
718
.
51.
Singh
,
A. K.
,
2011
, “
Castor Oil-Based Lubricant Reduces Smoke Emission in Two-Stroke Engines
,”
Ind. Crop. Prod.
,
33
(
2
), pp.
287
295
.
52.
Reeves
,
C. J.
,
Menezes
,
P. L.
,
Jen
,
T.
, and
Lovell
,
M. R.
,
2015
, “
The Influence of Fatty Acids on Tribological and Thermal Properties of Natural Oils as Sustainable Biolubricants
,”
Tribiology Int.
,
90
(
10
), pp.
123
134
.
53.
Zachariah
,
Z.
,
Nalam
,
P. C.
,
Ravindra
,
A.
,
Raju
,
A.
,
Mohanlal
,
A.
, and
Wang
,
K.
,
2020
, “
Correlation Between the Adsorption and the Nanotribological Performance of Fatty Acid-Based Organic Friction Modifiers on Stainless Steel
,”
Tribol. Lett.
,
68
(
11
), pp.
1
16
.
54.
Rabaso
,
P.
,
Dassenoy
,
F.
,
Ville
,
F.
,
Diaby
,
M.
,
Vacher
,
B.
,
Le Mogne
,
T.
,
Belin
,
M.
, and
Cavoret
,
J.
,
2014
, “
An Investigation on the Reduced Ability of IF-MoS2 Nanoparticles to Reduce Friction and Wear in the Presence of Dispersants
,”
Tribol. Lett.
,
55
(
3
), pp.
503
516
.
55.
Guimarey
,
M. J. G.
,
Abdelkader
,
A. M.
,
Comuñas
,
M. J. P.
,
Alvarez-Lorenzo
,
C.
,
Thomas
,
B.
,
Fernández
,
J.
, and
Hadfield
,
M.
,
2021
, “
Comparison Between Thermophysical and Tribological Properties of Two Engine Lubricant Additives: Electrochemically Exfoliated Graphene and Molybdenum Disulfide Nanoplatelets
,”
Nanotechnology
,
32
(
2
), p.
25701
.
56.
Rabaso
,
P.
,
Ville
,
F.
,
Dassenoy
,
F.
,
Diaby
,
M.
,
Afanasiev
,
P.
,
Cavoret
,
J.
,
Vacher
,
B.
, and
Le Mogne
,
T.
,
2014
, “
Boundary Lubrication: Influence of the Size and Structure of Inorganic Fullerene-Like MoS2 Nanoparticles on Friction and Wear Reduction
,”
Wear
,
320
(
1
), pp.
161
178
.
57.
Zhu
,
S.
, and
Huang
,
P.
,
2017
, “
Influence Mechanism of Morphological Parameters on Tribological Behaviors Based on Bearing Ratio Curve
,”
Tribiology Int.
,
109
(
5
), pp.
10
18
.
58.
Khaemba
,
D. N.
,
Azam
,
A.
,
See
,
T.
,
Neville
,
A.
, and
Salehi
,
F. M.
,
2020
, “
Understanding the Role of Surface Textures in Improving the Performance of Boundary Additives, Part I: Experimental
,”
Tribol. Int.
,
146
, p.
106243
.
59.
Xiao
,
H.
,
Dai
,
W.
,
Kan
,
Y.
,
Clearfield
,
A.
, and
Liang
,
H.
,
2015
, “
Amine-Intercalated α-Zirconium Phosphates as Lubricant Additives
,”
Appl. Surf. Sci.
,
329
(
2
), pp.
384
389
.
60.
Chouhan
,
A.
,
Kumari
,
S.
,
Sarkar
,
T. K.
,
Rawat
,
S. S.
, and
Khatri
,
O. P.
,
2020
, “
Graphene-Based Aqueous Lubricants: Dispersion Stability to the Enhancement of Tribological Properties
,”
ACS Appl. Mater. Interfaces
,
12
(
46
), pp.
51785
51796
.
61.
Mungse
,
H. P.
, and
Khatri
,
O. P.
,
2014
, “
Chemically Functionalized Reduced Graphene Oxide as a Novel Material for Reduction of Friction and Wear
,”
J. Phys. Chem. C
,
118
(
26
), pp.
14394
14402
.
62.
Wang
,
G.
,
Yang
,
J.
,
Park
,
J.
,
Gou
,
X.
,
Wang
,
B.
,
Liu
,
H.
, and
Yao
,
J.
,
2008
, “
Facile Synthesis and Characterization of Graphene Nanosheets
,”
J. Phys. Chem. C
,
112
(
22
), pp.
8192
8195
.
63.
Hsu
,
S. M.
,
1997
, “
Boundary Lubrication : Current Understanding
,”
Tribol. Lett.
,
3
(
1
), pp.
1
11
.
64.
Khaemba
,
D. N.
,
Jarnias
,
F.
,
Thiebaut
,
B.
,
Neville
,
A.
, and
Morina
,
A.
,
2017
, “
The Role of Surface Roughness and Slide-Roll Ratio on the Decomposition of MoDTC in Tribological Contacts
,”
J. Phys. D. Appl. Phys.
,
50
(
8
), p.
85302
.
65.
Zhang
,
W.
,
Bapat
,
S.
,
Malshe
,
A. P.
, and
Rajurkar
,
K. P.
,
2017
, “
Understanding Evolution of Tribo-Chemical Interfaces During Boundary Lubrication in Manufacturing
,”
CIRP Ann.—Manuf. Technol.
,
66
(
1
), pp.
555
558
.
66.
Kalita
,
P.
,
Malshe
,
A. P.
,
Jiang
,
W.
, and
Shih
,
A. J.
,
2010
, “
Tribological Study of Nano Lubricant Integrated Soybean Oil for Minimum Quantity Lubrication (MQL) Grinding
,”
Trans. North Am. Manuf. Res. Inst. SME
,
38
(
313
), pp.
137
144
.
67.
Kalita
,
P.
,
Malshe
,
A. P.
,
Kumar
,
S. A.
,
Yoganath
,
V. G.
, and
Gurumurthy
,
T.
,
2012
, “
Study of Specific Energy and Friction Coefficient in Minimum Quantity Lubrication Grinding Using Oil-Based Nanolubricants
,”
J. Manuf. Process.
,
14
(
2
), pp.
160
166
.
68.
Koshy
,
C. P.
,
Rajendrakumar
,
K. P.
, and
Thottackkad
,
M. V.
,
2015
, “
Evaluation of the Tribological and Thermo-Physical Properties of Coconut Oil Added With MoS2 Nanoparticles at Elevated Temperatures
,”
Wear
,
331
(
5
), pp.
288
308
.
You do not currently have access to this content.